Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
210681090714213621814311 ~2012
210684630234213692604711 ~2012
2106937813333711005012912 ~2014
210698176091011...45232114 2023
210730467834214609356711 ~2012
210730760394214615207911 ~2012
2107311219133716979505712 ~2014
210732941394214658827911 ~2012
210734156514214683130311 ~2012
210737211714214744234311 ~2012
2107481930929504747032712 ~2014
210749369514214987390311 ~2012
210753432594215068651911 ~2012
210754225314215084506311 ~2012
210756283194215125663911 ~2012
210764005194215280103911 ~2012
210766877994215337559911 ~2012
210767700234215354004711 ~2012
210770233914215404678311 ~2012
210773734194215474683911 ~2012
210775764834215515296711 ~2012
210781065594215621311911 ~2012
210782012994215640259911 ~2012
2107878215916863025727312 ~2013
210809142714216182854311 ~2012
Exponent Prime Factor Dig. Year
2108106697712648640186312 ~2013
210830806194216616123911 ~2012
2108316836916866534695312 ~2013
2108413422112650480532712 ~2013
2108480213312650881279912 ~2013
210857788914217155778311 ~2012
210860433114217208662311 ~2012
2108613462721086134627112 ~2013
210868903434217378068711 ~2012
210877610394217552207911 ~2012
210913180194218263603911 ~2012
2109215212116873721696912 ~2013
210937932714218758654311 ~2012
210942280194218845603911 ~2012
2109444642721094446427112 ~2013
210963549594219270991911 ~2012
2109780716950634737205712 ~2014
210983491194219669823911 ~2012
210986774034219735480711 ~2012
210990355914219807118311 ~2012
211005134634220102692711 ~2012
211010508234220210164711 ~2012
2110204964350644919143312 ~2014
211020891594220417831911 ~2012
211030113114220602262311 ~2012
Exponent Prime Factor Dig. Year
211037436234220748724711 ~2012
211043249634220864992711 ~2012
211077107034221542140711 ~2012
2110871194737995681504712 ~2014
211107139314222142786311 ~2012
211113799314222275986311 ~2012
211121491194222429823911 ~2012
211121504634222430092711 ~2012
2111483963916891871711312 ~2013
2111604755312669628531912 ~2013
211160983314223219666311 ~2012
211167504714223350094311 ~2012
2111687413712670124482312 ~2013
2111751403712670508422312 ~2013
2111933181712671599090312 ~2013
211204616994224092339911 ~2012
211208212194224164243911 ~2012
211239690594224793811911 ~2012
2112424941733798799067312 ~2014
211250587194225011743911 ~2012
211252859634225057192711 ~2012
211258403994225168079911 ~2012
211266763314225335266311 ~2012
211277387994225547759911 ~2012
2112943117921129431179112 ~2013
Exponent Prime Factor Dig. Year
2113049163712678294982312 ~2013
211321435314226428706311 ~2012
2113376174929587266448712 ~2014
211347770634226955412711 ~2012
2113477785712680866714312 ~2013
2113681011133818896177712 ~2014
2113790425312682742551912 ~2013
211396397394227927947911 ~2012
211398665634227973312711 ~2012
211402076394228041527911 ~2012
211416489594228329791911 ~2012
211420026714228400534311 ~2012
211422932994228458659911 ~2012
211425096834228501936711 ~2012
211428094194228561883911 ~2012
211438588194228771763911 ~2012
211446348114228926962311 ~2012
2114472001116915776008912 ~2013
2114517774112687106644712 ~2013
211456092114229121842311 ~2012
211464777834229295556711 ~2012
211473880434229477608711 ~2012
2114767177312688603063912 ~2013
2114774460112688646760712 ~2013
2114800126112688800756712 ~2013
Home
5.247.179 digits
e-mail
25-12-14