Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
11105722615122211445230312 ~2017
11105761067922211522135912 ~2017
11106355980166638135880712 ~2018
11106676289922213352579912 ~2017
11109500711922219001423912 ~2017
11109882110322219764220712 ~2017
11111130266322222260532712 ~2017
11113483549122226967098312 ~2017
11113665470322227330940712 ~2017
11116436251122232872502312 ~2017
11116998637766701991826312 ~2018
11118250169366709501015912 ~2018
11118495661366710973967912 ~2018
11119548464322239096928712 ~2017
11120025689922240051379912 ~2017
11120187104322240374208712 ~2017
11121058159122242116318312 ~2017
11121904057122243808114312 ~2017
11122676479122245352958312 ~2017
11124082747122248165494312 ~2017
11124281374166745688244712 ~2018
1112551936612403...83077714 2024
11127206521122254413042312 ~2017
11127291218322254582436712 ~2017
11127442891122254885782312 ~2017
Exponent Prime Factor Dig. Year
11128590722322257181444712 ~2017
11128679209122257358418312 ~2017
11128747393122257494786312 ~2017
11129666630322259333260712 ~2017
11130349531122260699062312 ~2017
11131372687122262745374312 ~2017
11131500484166789002904712 ~2018
11131605055122263210110312 ~2017
11132811901766796871410312 ~2018
11132888749766797332498312 ~2018
11133074738322266149476712 ~2017
11133086509122266173018312 ~2017
11133545695122267091390312 ~2017
11133702280166802213680712 ~2018
11134325183922268650367912 ~2017
11134400353122268800706312 ~2017
11135715011922271430023912 ~2017
11137957574322275915148712 ~2017
11138373203922276746407912 ~2017
11138491892322276983784712 ~2017
11139330151122278660302312 ~2017
11139917960322279835920712 ~2017
11141105497122282210994312 ~2017
11141568446322283136892712 ~2017
11142197342322284394684712 ~2017
Exponent Prime Factor Dig. Year
11142328334322284656668712 ~2017
11145433411122290866822312 ~2017
11145903632322291807264712 ~2017
11145925385922291850771912 ~2017
11146066723122292133446312 ~2017
11146180316322292360632712 ~2017
11146516297366879097783912 ~2018
11147466919122294933838312 ~2017
11150520818322301041636712 ~2017
11150624966322301249932712 ~2017
11151050587122302101174312 ~2017
11151140738322302281476712 ~2017
11152420010322304840020712 ~2017
11153425681122306851362312 ~2017
11153811422322307622844712 ~2017
11154011888322308023776712 ~2017
11154924325122309848650312 ~2017
11155040765922310081531912 ~2017
11155459211922310918423912 ~2017
11156467382322312934764712 ~2017
11157536489922315072979912 ~2017
11157768831766946612990312 ~2018
11158120297766948721786312 ~2018
11159046727366954280363912 ~2018
11159378792322318757584712 ~2017
Exponent Prime Factor Dig. Year
11160270401922320540803912 ~2017
11160380783922320761567912 ~2017
11161051382322322102764712 ~2017
11161731589122323463178312 ~2017
11162249791122324499582312 ~2017
11162345935122324691870312 ~2017
11163785266166982711596712 ~2018
11164330865366985985191912 ~2018
11166885283122333770566312 ~2017
11166918830322333837660712 ~2017
11167788973122335577946312 ~2017
11168220913767009325482312 ~2018
11168519237922337038475912 ~2017
11168552480322337104960712 ~2017
11168665403922337330807912 ~2017
11168825268167012951608712 ~2018
11169039212322338078424712 ~2017
11169844712322339689424712 ~2017
11170501430322341002860712 ~2017
11171219191767027315150312 ~2018
11171249755122342499510312 ~2017
11171933762322343867524712 ~2017
11172185837367033115023912 ~2018
11172805008167036830048712 ~2018
11173348559922346697119912 ~2017
Home
4.768.925 digits
e-mail
25-05-04