Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7338980377114677960754312 ~2016
7339692692314679385384712 ~2016
7339990942144039945652712 ~2017
7340077501114680155002312 ~2016
7340795054314681590108712 ~2016
7340819414314681638828712 ~2016
7341321533914682643067912 ~2016
7341553513114683107026312 ~2016
7341846377344051078263912 ~2017
7342441556314684883112712 ~2016
7343538011344061228067912 ~2017
7343596405114687192810312 ~2016
7344816731914689633463912 ~2016
7344865769914689731539912 ~2016
7344868408758758947269712 ~2017
7345089887914690179775912 ~2016
7345329419914690658839912 ~2016
7345377829114690755658312 ~2016
7345959613744075757682312 ~2017
7345981867114691963734312 ~2016
7346336081914692672163912 ~2016
7346667493744080004962312 ~2017
7346677910314693355820712 ~2016
7346969990314693939980712 ~2016
7347397440144084384640712 ~2017
Exponent Prime Factor Dig. Year
7347773714314695547428712 ~2016
7347857120314695714240712 ~2016
7347862151914695724303912 ~2016
7347961153114695922306312 ~2016
7348474520314696949040712 ~2016
7348521906144091131436712 ~2017
7349096882314698193764712 ~2016
7349307763114698615526312 ~2016
7349748863914699497727912 ~2016
7349792138314699584276712 ~2016
7350241987114700483974312 ~2016
7350311203114700622406312 ~2016
7350610252158804882016912 ~2017
7351552696158812421568912 ~2017
7352079082144112474492712 ~2017
7352373061344114238367912 ~2017
7352374957114704749914312 ~2016
7352502377914705004755912 ~2016
7352976065914705952131912 ~2016
7353573109114707146218312 ~2016
7353911666314707823332712 ~2016
7354550903914709101807912 ~2016
7354732133914709464267912 ~2016
7354765604314709531208712 ~2016
7354903619958839228959312 ~2017
Exponent Prime Factor Dig. Year
7354917734314709835468712 ~2016
7355706547344134239283912 ~2017
7355993155114711986310312 ~2016
7357215725914714431451912 ~2016
7357467980314714935960712 ~2016
7358200400314716400800712 ~2016
7359713143114719426286312 ~2016
7359937393114719874786312 ~2016
7360017277114720034554312 ~2016
7360405737744162434426312 ~2017
7360747051344164482307912 ~2017
7360950277344165701663912 ~2017
7361351947758890815581712 ~2017
7361401423344168408539912 ~2017
7361658727158893269816912 ~2017
7361721677914723443355912 ~2016
7362571189114725142378312 ~2016
7362695165914725390331912 ~2016
7362885740958903085927312 ~2017
7363443159744180658958312 ~2017
7363494305914726988611912 ~2016
7363742425114727484850312 ~2016
7364106019114728212038312 ~2016
7364343847114728687694312 ~2016
7364412427114728824854312 ~2016
Exponent Prime Factor Dig. Year
7364611118314729222236712 ~2016
7364941291158919530328912 ~2017
7365298665173652986651112 ~2018
7365648353914731296707912 ~2016
7365693326314731386652712 ~2016
7365824799744194948798312 ~2017
7365872042314731744084712 ~2016
7365984671914731969343912 ~2016
7366353549744198121298312 ~2017
7366578493114733156986312 ~2016
7367132233114734264466312 ~2016
7367515865914735031731912 ~2016
7367718529344206311175912 ~2017
7367785436314735570872712 ~2016
7368427501114736855002312 ~2016
7368890915914737781831912 ~2016
7368919507114737839014312 ~2016
7369214402314738428804712 ~2016
7369237595914738475191912 ~2016
7369480189114738960378312 ~2016
7369597849114739195698312 ~2016
7370031440314740062880712 ~2016
7370083121914740166243912 ~2016
7370711167973707111679112 ~2018
7370757119344224542715912 ~2017
Home
4.768.925 digits
e-mail
25-05-04