Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10140083024320280166048712 ~2017
10140549319120281098638312 ~2017
10140584497120281168994312 ~2017
10140984001120281968002312 ~2017
10141002467920282004935912 ~2017
10142560253920285120507912 ~2017
10143760946320287521892712 ~2017
10143846581920287693163912 ~2017
10143889415920287778831912 ~2017
10145078583760870471502312 ~2018
10145373947920290747895912 ~2017
10145446577920290893155912 ~2017
10145620550320291241100712 ~2017
10145840636320291681272712 ~2017
1014592106635438...91536914 2024
10146291289120292582578312 ~2017
10146495361760878972170312 ~2018
10146912721120293825442312 ~2017
10147778724160886672344712 ~2018
10147815055120295630110312 ~2017
10148421566320296843132712 ~2017
10148913626320297827252712 ~2017
10148990972320297981944712 ~2017
10149041722160894250332712 ~2018
10149656723920299313447912 ~2017
Exponent Prime Factor Dig. Year
10150611661120301223322312 ~2017
10151464538320302929076712 ~2017
10153026644320306053288712 ~2017
10153073990320306147980712 ~2017
10153297421920306594843912 ~2017
10153391305120306782610312 ~2017
10153469769760920818618312 ~2018
10154139679120308279358312 ~2017
10154805191920309610383912 ~2017
10155452623120310905246312 ~2017
10155666998320311333996712 ~2017
10155958304320311916608712 ~2017
10156408381120312816762312 ~2017
10156596703120313193406312 ~2017
10157122135120314244270312 ~2017
10157150858320314301716712 ~2017
10158949706320317899412712 ~2017
10159277017120318554034312 ~2017
10159496999920318993999912 ~2017
10159562303920319124607912 ~2017
10159675334320319350668712 ~2017
10159976393920319952787912 ~2017
10161685412320323370824712 ~2017
10163150827120326301654312 ~2017
10163192264320326384528712 ~2017
Exponent Prime Factor Dig. Year
10163665040320327330080712 ~2017
10163733296320327466592712 ~2017
10164060205120328120410312 ~2017
10165042229920330084459912 ~2017
10166116367920332232735912 ~2017
10167487478320334974956712 ~2017
10167624209920335248419912 ~2017
10168876693761013260162312 ~2018
10169194862320338389724712 ~2017
10170007482161020044892712 ~2018
10170345790161022074740712 ~2018
10171329092320342658184712 ~2017
10171570930161029425580712 ~2018
10172413543361034481259912 ~2018
10172993120320345986240712 ~2017
10173966365920347932731912 ~2017
10174566235120349132470312 ~2017
10175426749361052560495912 ~2018
10176562213120353124426312 ~2017
1017675642732605...45388914 2024
10177406771361064440627912 ~2018
10177576400320355152800712 ~2017
10178212754320356425508712 ~2017
10178375869761070255218312 ~2018
10178666576320357333152712 ~2017
Exponent Prime Factor Dig. Year
1017895481711475...84795115 2025
10180778833761084673002312 ~2018
10181116121920362232243912 ~2017
10181260823920362521647912 ~2017
10181715371920363430743912 ~2017
10184128675361104772051912 ~2018
1018457163611214...90231315 2025
1018497969291328...19541715 2025
10185267421120370534842312 ~2017
10185377141920370754283912 ~2017
10185641575120371283150312 ~2017
10185935294320371870588712 ~2017
10186201469361117208815912 ~2018
10186809403361120856419912 ~2018
10187017664320374035328712 ~2017
10187373575920374747151912 ~2017
10188542806161131256836712 ~2018
10188790460320377580920712 ~2017
10189088665120378177330312 ~2017
10190820098320381640196712 ~2017
10191252068320382504136712 ~2017
10191579265120383158530312 ~2017
10192895996320385791992712 ~2017
10193697571761162185430312 ~2018
10194692954320389385908712 ~2017
Home
4.768.925 digits
e-mail
25-05-04