Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
16535521997933071043995912 ~2019
16536077879933072155759912 ~2019
16538883302333077766604712 ~2019
16539106523933078213047912 ~2019
16540394834333080789668712 ~2019
16540479740333080959480712 ~2019
16541659805933083319611912 ~2019
16541678738333083357476712 ~2019
16543142125133086284250312 ~2019
16543236569933086473139912 ~2019
16543379954333086759908712 ~2019
16545251891933090503783912 ~2019
16545338300333090676600712 ~2019
16546689356333093378712712 ~2019
16546965338333093930676712 ~2019
16547302255133094604510312 ~2019
16548266561933096533123912 ~2019
16549903549133099807098312 ~2019
16551859406333103718812712 ~2019
16553950670333107901340712 ~2019
16556064643133112129286312 ~2019
16557527684333115055368712 ~2019
16557850493933115700987912 ~2019
16558978616333117957232712 ~2019
16559090807933118181615912 ~2019
Exponent Prime Factor Dig. Year
16559527865933119055731912 ~2019
16559556452333119112904712 ~2019
16560844967933121689935912 ~2019
16560879242333121758484712 ~2019
16560908051933121816103912 ~2019
16562644249133125288498312 ~2019
16564397611133128795222312 ~2019
16565455439933130910879912 ~2019
16565505685133131011370312 ~2019
16565650235933131300471912 ~2019
16566423869933132847739912 ~2019
16566472961933132945923912 ~2019
16566681827933133363655912 ~2019
16567336913933134673827912 ~2019
16567980032333135960064712 ~2019
16567982215133135964430312 ~2019
16569080606333138161212712 ~2019
16569355001933138710003912 ~2019
16571480605133142961210312 ~2019
16574661770333149323540712 ~2019
16577373397133154746794312 ~2019
16579161235133158322470312 ~2019
16584000097133168000194312 ~2019
16586056646333172113292712 ~2019
16586943667133173887334312 ~2019
Exponent Prime Factor Dig. Year
16589704274333179408548712 ~2019
16593962309933187924619912 ~2019
16597368229133194736458312 ~2019
16597593707933195187415912 ~2019
16598428022333196856044712 ~2019
16600725572333201451144712 ~2019
16603354406333206708812712 ~2019
16605220649933210441299912 ~2019
16605943091933211886183912 ~2019
16606102799933212205599912 ~2019
16608040016333216080032712 ~2019
16608189938333216379876712 ~2019
16608957901133217915802312 ~2019
16609170901133218341802312 ~2019
1660984906433089...25959914 2024
1661052083278272...74684714 2024
16610857898333221715796712 ~2019
16611873476333223746952712 ~2019
16612440119933224880239912 ~2019
16616386093133232772186312 ~2019
16618725187133237450374312 ~2019
16621153607933242307215912 ~2019
16621189496333242378992712 ~2019
16623215555933246431111912 ~2019
1662358882812094...92340714 2024
Exponent Prime Factor Dig. Year
16624849913933249699827912 ~2019
16625469587933250939175912 ~2019
16625589953933251179907912 ~2019
16628602853933257205707912 ~2019
1663265409672661...55472114 2024
16633160989133266321978312 ~2019
16633205849933266411699912 ~2019
16633458938333266917876712 ~2019
16633687892333267375784712 ~2019
16634905091933269810183912 ~2019
16635643507133271287014312 ~2019
1663585551731563...18626314 2024
16636017973133272035946312 ~2019
16636140638333272281276712 ~2019
16638544069133277088138312 ~2019
16640184500333280369000712 ~2019
16641590390333283180780712 ~2019
16642993499933285986999912 ~2019
16643453065133286906130312 ~2019
16643490781133286981562312 ~2019
16647130471133294260942312 ~2019
16647333955133294667910312 ~2019
16647414823133294829646312 ~2019
16650639373133301278746312 ~2019
16652062811933304125623912 ~2019
Home
4.679.597 digits
e-mail
25-03-23