Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7238912059114477824118312 ~2016
7239210884314478421768712 ~2016
7239458257343436749543912 ~2017
7239501578314479003156712 ~2016
7239609456772396094567112 ~2018
7240181699914480363399912 ~2016
7240398016757923184133712 ~2017
7240569331743443415990312 ~2017
7240706090314481412180712 ~2016
7241729393914483458787912 ~2016
7243299517114486599034312 ~2016
7243615205914487230411912 ~2016
7244024657914488049315912 ~2016
7244241842314488483684712 ~2016
7244603465914489206931912 ~2016
7244614724314489229448712 ~2016
7244689343343468136059912 ~2017
7245760595914491521191912 ~2016
7246330921114492661842312 ~2016
7247597755114495195510312 ~2016
7247864455157982915640912 ~2017
7248266427743489598566312 ~2017
7249931479114499862958312 ~2016
7250001445114500002890312 ~2016
7250233807114500467614312 ~2016
Exponent Prime Factor Dig. Year
7250347397914500694795912 ~2016
7251034997914502069995912 ~2016
725135018391683...27015915 2025
7251385769343508314615912 ~2017
7251823717343510942303912 ~2017
7252324104772523241047112 ~2018
7252565584158020524672912 ~2017
7252850307743517101846312 ~2017
7253472745114506945490312 ~2016
7253482358314506964716712 ~2016
7255305863914510611727912 ~2016
7255309303114510618606312 ~2016
7255350127114510700254312 ~2016
7255429572143532577432712 ~2017
7255816831114511633662312 ~2016
7255873424314511746848712 ~2016
7256087030314512174060712 ~2016
7256401741114512803482312 ~2016
7256586649758052693197712 ~2017
7256669035114513338070312 ~2016
7256755868314513511736712 ~2016
7257234625114514469250312 ~2016
7257695324314515390648712 ~2016
7257774794314515549588712 ~2016
7258024543343548147259912 ~2017
Exponent Prime Factor Dig. Year
7258346039914516692079912 ~2016
7258481383114516962766312 ~2016
7258700222314517400444712 ~2016
7259400746958075205975312 ~2017
7259675953758077407629712 ~2017
7259828053743558968322312 ~2017
7260436217914520872435912 ~2016
726048246731553...48002314 2023
7260542916143563257496712 ~2017
7260894305914521788611912 ~2016
7261011299914522022599912 ~2016
7261214555914522429111912 ~2016
7261411229914522822459912 ~2016
7261423705114522847410312 ~2016
7261672237114523344474312 ~2016
7261723587172617235871112 ~2018
7261972376314523944752712 ~2016
7262115925343572695551912 ~2017
7262212055914524424111912 ~2016
7263129301158105034408912 ~2017
7263321658158106573264912 ~2017
7263696332314527392664712 ~2016
7263735431914527470863912 ~2016
7264310840314528621680712 ~2016
7264568941114529137882312 ~2016
Exponent Prime Factor Dig. Year
7264742459958117939679312 ~2017
7264767139114529534278312 ~2016
7264865221343589191327912 ~2017
7265175643114530351286312 ~2016
7265676274158125410192912 ~2017
7266292094314532584188712 ~2016
7266338461114532676922312 ~2016
7266440114314532880228712 ~2016
7267098271743602589630312 ~2017
7267252663114534505326312 ~2016
7267771876143606631256712 ~2017
7268160896314536321792712 ~2016
7268206709914536413419912 ~2016
7268383661914536767323912 ~2016
7268604973114537209946312 ~2016
7269107461114538214922312 ~2016
7270270472958162163783312 ~2017
7270422643343622535859912 ~2017
7270546361914541092723912 ~2016
7270598179114541196358312 ~2016
7270687643914541375287912 ~2016
7270801630143624809780712 ~2017
7270902106158167216848912 ~2017
7271018777914542037555912 ~2016
7272152023343632912139912 ~2017
Home
4.768.925 digits
e-mail
25-05-04