Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1092487502173911...57768714 2023
10925713964321851427928712 ~2017
10925977081121851954162312 ~2017
10926191557121852383114312 ~2017
10926652437765559914626312 ~2018
10927623794321855247588712 ~2017
10927933529921855867059912 ~2017
1092883058175088...88395315 2025
10929357497921858714995912 ~2017
10929627401921859254803912 ~2017
10930201456165581208736712 ~2018
10930422662321860845324712 ~2017
10930681550321861363100712 ~2017
10930729867121861459734312 ~2017
10931127944321862255888712 ~2017
10931611514321863223028712 ~2017
10931934245365591605471912 ~2018
1093237841332514...35059114 2024
10932980135921865960271912 ~2017
10933815147765602890886312 ~2018
10934997272321869994544712 ~2017
10936539535365619237211912 ~2018
10937419921765624519530312 ~2018
10937928566321875857132712 ~2017
10938157403365628944419912 ~2018
Exponent Prime Factor Dig. Year
10938351022165630106132712 ~2018
10938526159121877052318312 ~2017
10940246419121880492838312 ~2017
10940936537921881873075912 ~2017
10943024357921886048715912 ~2017
1094326169632626...07112114 2024
10943634449921887268899912 ~2017
10944306407921888612815912 ~2017
10945735199921891470399912 ~2017
1094610625671234...57557715 2025
10947647273921895294547912 ~2017
10947684368321895368736712 ~2017
10948394849921896789699912 ~2017
10948910435921897820871912 ~2017
10949034811121898069622312 ~2017
10949185393765695112362312 ~2018
10949269489765695616938312 ~2018
10951396247921902792495912 ~2017
10952233019921904466039912 ~2017
10952388427121904776854312 ~2017
10953769247921907538495912 ~2017
10953893906321907787812712 ~2017
10954030425765724182554312 ~2018
10955273171921910546343912 ~2017
10955309690321910619380712 ~2017
Exponent Prime Factor Dig. Year
10955563086165733378516712 ~2018
10957724737121915449474312 ~2017
10957966898321915933796712 ~2017
10958112800321916225600712 ~2017
10958172353921916344707912 ~2017
10958657919765751947518312 ~2018
10958875293765753251762312 ~2018
10959523787921919047575912 ~2017
10959722408321919444816712 ~2017
10961093173765766559042312 ~2018
10961958740321923917480712 ~2017
10962838946321925677892712 ~2017
10963181647121926363294312 ~2017
10963813352321927626704712 ~2017
10963852661921927705323912 ~2017
1096456811418420...11628914 2024
10967169877121934339754312 ~2017
10968413323121936826646312 ~2017
10968595132165811570792712 ~2018
10969066022321938132044712 ~2017
10969430972321938861944712 ~2017
10971148679921942297359912 ~2017
10971821273921943642547912 ~2017
10971867437921943734875912 ~2017
10971922843121943845686312 ~2017
Exponent Prime Factor Dig. Year
10971941995121943883990312 ~2017
10972533902321945067804712 ~2017
10973094602321946189204712 ~2017
10973759540321947519080712 ~2017
1097428640831071...34500915 2025
10975188269921950376539912 ~2017
10975461035921950922071912 ~2017
10975688984321951377968712 ~2017
1097593962734456...88683914 2023
1097727894491025...34536715 2023
10977382609121954765218312 ~2017
10978262291921956524583912 ~2017
10978295965121956591930312 ~2017
10979664053921959328107912 ~2017
10979721587365878329523912 ~2018
1098058721392980...98524715 2023
10980780761921961561523912 ~2017
10981245206321962490412712 ~2017
10982564108321965128216712 ~2017
10983424879121966849758312 ~2017
10983487973365900927839912 ~2018
10984570355921969140711912 ~2017
10984607479121969214958312 ~2017
10985259601121970519202312 ~2017
10985416124321970832248712 ~2017
Home
4.768.925 digits
e-mail
25-05-04