Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
170716874393414337487911 ~2011
170717386793414347735911 ~2011
170719216313414384326311 ~2011
1707299195913658393567312 ~2012
170731214633414624292711 ~2011
170740158593414803171911 ~2011
1707438340781957040353712 ~2014
170748582113414971642311 ~2011
170750456393415009127911 ~2011
170757464633415149292711 ~2011
170763018713415260374311 ~2011
170764608113415292162311 ~2011
1707706489710246238938312 ~2012
170772375593415447511911 ~2011
170772833393415456667911 ~2011
1707840325710247041954312 ~2012
170785003913415700078311 ~2011
170788022633415760452711 ~2011
170790422033415808440711 ~2011
170790608993415812179911 ~2011
1707933415723911067819912 ~2013
170795550713415911014311 ~2011
1708062881310248377287912 ~2012
1708064160110248384960712 ~2012
170811492233416229844711 ~2011
Exponent Prime Factor Dig. Year
170821772393416435447911 ~2011
1708244529751247335891112 ~2014
170836131593416722631911 ~2011
1708380247185419012355112 ~2014
170844424433416888488711 ~2011
170844879233416897584711 ~2011
1708512777117085127771112 ~2013
1708569613710251417682312 ~2012
170864025233417280504711 ~2011
170867151833417343036711 ~2011
170870006993417400139911 ~2011
1708820011713670560093712 ~2012
170905757393418115147911 ~2011
170907081713418141634311 ~2011
1709126602110254759612712 ~2012
1709193736713673549893712 ~2012
170919654833418393096711 ~2011
170920050833418401016711 ~2011
170923011233418460224711 ~2011
1709260630113674085040912 ~2012
1709366150913674929207312 ~2012
170943964433418879288711 ~2011
1709444533710256667202312 ~2012
170962513913419250278311 ~2011
1709753114954712099676912 ~2014
Exponent Prime Factor Dig. Year
170978967713419579354311 ~2011
170982275633419645512711 ~2011
170986273913419725478311 ~2011
170992096433419841928711 ~2011
1709971811310259830867912 ~2012
1709972006923939608096712 ~2013
1710087113310260522679912 ~2012
171014008313420280166311 ~2011
1710155551713681244413712 ~2012
1710308479917103084799112 ~2013
1710325434110261952604712 ~2012
1710387321127366197137712 ~2013
171042104271836...99859914 2024
171045186593420903731911 ~2011
171045361913420907238311 ~2011
1710454655930788183806312 ~2013
171045813113420916262311 ~2011
171048732113420974642311 ~2011
171050097833421001956711 ~2011
1710567214110263403284712 ~2012
1710585960127369375361712 ~2013
171063614513421272290311 ~2011
171069226433421384528711 ~2011
171073864313421477286311 ~2011
171078069593421561391911 ~2011
Exponent Prime Factor Dig. Year
171078345113421566902311 ~2011
1710834787713686678301712 ~2012
1710848620937638669659912 ~2013
171095211833421904236711 ~2011
171104253833422085076711 ~2011
171105119033422102380711 ~2011
171107334113422146682311 ~2011
171110426033422208520711 ~2011
171118022033422360440711 ~2011
1711200082327379201316912 ~2013
171126388913422527778311 ~2011
171138986033422779720711 ~2011
171139188833422783776711 ~2011
171139331633422786632711 ~2011
171153071513423061430311 ~2011
171158484233423169684711 ~2011
171170443313423408866311 ~2011
171170542433423410848711 ~2011
1711890866913695126935312 ~2012
171204909833424098196711 ~2011
171209425193424188503911 ~2011
1712158474937667486447912 ~2014
171216036713424320734311 ~2011
1712162072354789186313712 ~2014
171216347033424326940711 ~2011
Home
5.307.017 digits
e-mail
26-01-11