Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10194929353120389858706312 ~2017
10195193659120390387318312 ~2017
10195369195120390738390312 ~2017
10195801343920391602687912 ~2017
10196038931920392077863912 ~2017
10197509213920395018427912 ~2017
10197661627120395323254312 ~2017
10198012430320396024860712 ~2017
10198482907120396965814312 ~2017
10198921109920397842219912 ~2017
10200442724320400885448712 ~2017
10201039664320402079328712 ~2017
10201414962161208489772712 ~2018
10201825250320403650500712 ~2017
10201928329120403856658312 ~2017
10202334593920404669187912 ~2017
10202647667920405295335912 ~2017
10204050763120408101526312 ~2017
10204659905920409319811912 ~2017
10205513414320411026828712 ~2017
10207057435120414114870312 ~2017
1020706675192470...53959914 2024
10209036673361254220039912 ~2018
10209228899920418457799912 ~2017
10210112203120420224406312 ~2017
Exponent Prime Factor Dig. Year
10210484156320420968312712 ~2017
1021053593337412...87575914 2024
10210730864320421461728712 ~2017
10210852030161265112180712 ~2018
10212955343361277732059912 ~2018
10213051444161278308664712 ~2018
10213575655361281453931912 ~2018
10213968721120427937442312 ~2017
10214175056320428350112712 ~2017
10214255497120428510994312 ~2017
10214498723920428997447912 ~2017
1021529561175618...86435114 2024
10215344042320430688084712 ~2017
10215740743120431481486312 ~2017
10216037738320432075476712 ~2017
10216512314320433024628712 ~2017
10216796251120433592502312 ~2017
10216908253120433816506312 ~2017
10216991780320433983560712 ~2017
10218439601920436879203912 ~2017
10219404975761316429854312 ~2018
10219520879920439041759912 ~2017
10219684601920439369203912 ~2017
10220017391920440034783912 ~2017
10220352667120440705334312 ~2017
Exponent Prime Factor Dig. Year
10220881442320441762884712 ~2017
10221257439761327544638312 ~2018
10221378575920442757151912 ~2017
10221800222320443600444712 ~2017
10222833545920445667091912 ~2017
10222838018320445676036712 ~2017
10226589241120453178482312 ~2017
1022709864733109...88779314 2024
10227991826320455983652712 ~2017
10228205845120456411690312 ~2017
10228732592320457465184712 ~2017
10228885529920457771059912 ~2017
10229747935120459495870312 ~2017
10231725407920463450815912 ~2017
10231740485920463480971912 ~2017
10233285119920466570239912 ~2017
10233638942320467277884712 ~2017
10233657164320467314328712 ~2017
10236161485761416968914312 ~2018
10237044470320474088940712 ~2017
10238301056320476602112712 ~2017
10238303041120476606082312 ~2017
10239727580320479455160712 ~2017
1023984532214730...38810314 2024
10240828309120481656618312 ~2017
Exponent Prime Factor Dig. Year
10241848909120483697818312 ~2017
10242018697120484037394312 ~2017
10242908431120485816862312 ~2017
10243572421120487144842312 ~2017
10243706588320487413176712 ~2017
10244542292320489084584712 ~2017
10244967917920489935835912 ~2017
10246103036320492206072712 ~2017
10246901827120493803654312 ~2017
10247793732161486762392712 ~2018
10249492673920498985347912 ~2017
10250025409120500050818312 ~2017
10250345869761502075218312 ~2018
10250577227920501154455912 ~2017
10250824916320501649832712 ~2017
10250846179361505077075912 ~2018
10251274979920502549959912 ~2017
10251717632320503435264712 ~2017
10251972725920503945451912 ~2017
10251993067120503986134312 ~2017
10252005319361512031915912 ~2018
10252043633920504087267912 ~2017
10252194413920504388827912 ~2017
10252864669120505729338312 ~2017
10253340461920506680923912 ~2017
Home
4.768.925 digits
e-mail
25-05-04