Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
12697722204176186333224712 ~2019
12699182875125398365750312 ~2018
12699618661776197711970312 ~2019
1269986559111463...60947315 2024
12700123871925400247743912 ~2018
12700695061125401390122312 ~2018
12700747585125401495170312 ~2018
12702046136325404092272712 ~2018
12702367753125404735506312 ~2018
12702744896325405489792712 ~2018
12702778943925405557887912 ~2018
12704223174176225339044712 ~2019
1270485077533636...18908715 2023
1270507174033862...09051314 2023
12705324703125410649406312 ~2018
12705481841925410963683912 ~2018
12706185511376237113067912 ~2019
12706536505125413073010312 ~2018
12706755038325413510076712 ~2018
12707863315125415726630312 ~2018
12708749126325417498252712 ~2018
1270956522533838...98040714 2023
12710183139776261098838312 ~2019
12710418326325420836652712 ~2018
12711248282325422496564712 ~2018
Exponent Prime Factor Dig. Year
12711270953925422541907912 ~2018
12711321064176267926384712 ~2019
12712717649925425435299912 ~2018
12714091271925428182543912 ~2018
12714427885125428855770312 ~2018
12714511862325429023724712 ~2018
12716661344325433322688712 ~2018
12717026156325434052312712 ~2018
12717388741125434777482312 ~2018
12717946423125435892846312 ~2018
12718229855925436459711912 ~2018
12718992077925437984155912 ~2018
12719551307925439102615912 ~2018
12719768579925439537159912 ~2018
12720239240325440478480712 ~2018
12720789349776324736098312 ~2019
12721155826176326934956712 ~2019
12721456195125442912390312 ~2018
1272232346693435...36063114 2024
12722591783925445183567912 ~2018
12723150371925446300743912 ~2018
1272362821631089...53152915 2023
12724626403125449252806312 ~2018
12725261060325450522120712 ~2018
12725817380325451634760712 ~2018
Exponent Prime Factor Dig. Year
12726582149925453164299912 ~2018
12726969787376361818723912 ~2019
12727270031925454540063912 ~2018
12727901615925455803231912 ~2018
1272850624133133...66080715 2024
12729469519125458939038312 ~2018
12729778655925459557311912 ~2018
12729880250325459760500712 ~2018
12730121095125460242190312 ~2018
12730307141925460614283912 ~2018
12732677864325465355728712 ~2018
12733691324325467382648712 ~2018
12733883795925467767591912 ~2018
12735464173125470928346312 ~2018
12736509883125473019766312 ~2018
12737217288176423303728712 ~2019
12737241043376423446259912 ~2019
12737489561925474979123912 ~2018
12737761261776426567570312 ~2019
12737823727125475647454312 ~2018
12738195800325476391600712 ~2018
12738873685125477747370312 ~2018
12741016741125482033482312 ~2018
12744412566176466475396712 ~2019
12745014588176470087528712 ~2019
Exponent Prime Factor Dig. Year
12745163801925490327603912 ~2018
12746257159125492514318312 ~2018
12746855381925493710763912 ~2018
12747073316325494146632712 ~2018
12747768649125495537298312 ~2018
12749621138325499242276712 ~2018
12750291137925500582275912 ~2018
12750955718325501911436712 ~2018
12751152810176506916860712 ~2019
12751334203125502668406312 ~2018
12751634235776509805414312 ~2019
12752074585125504149170312 ~2018
12752096045925504192091912 ~2018
12752839676325505679352712 ~2018
12753009353925506018707912 ~2018
12753393769125506787538312 ~2018
12754670195925509340391912 ~2018
12755331704325510663408712 ~2018
12756908312325513816624712 ~2018
12760671128325521342256712 ~2018
12761443777125522887554312 ~2018
12761473969125522947938312 ~2018
12762060863925524121727912 ~2018
12763075265925526150531912 ~2018
12763527295125527054590312 ~2018
Home
4.724.182 digits
e-mail
25-04-13