Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9914985956979319887655312 ~2018
9915944633919831889267912 ~2017
9916249883359497499299912 ~2018
991663019174997...16616914 2023
9917395391919834790783912 ~2017
9918558425919837116851912 ~2017
9918779481759512676890312 ~2018
9919627963119839255926312 ~2017
9919676794779357414357712 ~2018
9920142236319840284472712 ~2017
9920383436319840766872712 ~2017
9920618443119841236886312 ~2017
9921313945119842627890312 ~2017
9921543241779372345933712 ~2018
9922873565919845747131912 ~2017
9923293405119846586810312 ~2017
9923740159119847480318312 ~2017
9924066688159544400128712 ~2018
9924215545119848431090312 ~2017
9924460895919848921791912 ~2017
9924918757119849837514312 ~2017
9924999002319849998004712 ~2017
9925935338319851870676712 ~2017
9925980263359555881579912 ~2018
9926033036319852066072712 ~2017
Exponent Prime Factor Dig. Year
9926833141119853666282312 ~2017
9927009617919854019235912 ~2017
9927603403119855206806312 ~2017
9927770327919855540655912 ~2017
992804643731648...08591914 2024
9928375955919856751911912 ~2017
9928756883919857513767912 ~2017
9929023783119858047566312 ~2017
9930397690159582386140712 ~2018
9931756318159590537908712 ~2018
9932446664979459573319312 ~2018
9932483107119864966214312 ~2017
9932659598319865319196712 ~2017
9933161317759598967906312 ~2018
9934284505119868569010312 ~2017
9934476050319868952100712 ~2017
9935235469119870470938312 ~2017
9937394227359624365363912 ~2018
9937837253919875674507912 ~2017
9938803825119877607650312 ~2017
9938856871119877713742312 ~2017
9939012943119878025886312 ~2017
9939163759119878327518312 ~2017
9939493591119878987182312 ~2017
9939628129119879256258312 ~2017
Exponent Prime Factor Dig. Year
9940042265919880084531912 ~2017
9940579816179524638528912 ~2018
9940709729919881419459912 ~2017
9941607434319883214868712 ~2017
9942219007119884438014312 ~2017
9942724250319885448500712 ~2017
9943087015119886174030312 ~2017
9943570123119887140246312 ~2017
9943985066319887970132712 ~2017
9943989937119887979874312 ~2017
9944661551919889323103912 ~2017
9944688050319889376100712 ~2017
994525008372545...21427314 2024
9945630589119891261178312 ~2017
9945737131119891474262312 ~2017
9946521313119893042626312 ~2017
9947293255119894586510312 ~2017
9948312319359689873915912 ~2018
9949467046159696802276712 ~2018
9950422268319900844536712 ~2017
9951890876319903781752712 ~2017
9952679771919905359543912 ~2017
9953467886319906935772712 ~2017
9954382754319908765508712 ~2017
9956049475119912098950312 ~2017
Exponent Prime Factor Dig. Year
9956080357119912160714312 ~2017
9956937770319913875540712 ~2017
9956999731119913999462312 ~2017
9957215575119914431150312 ~2017
9957891229119915782458312 ~2017
9959571128319919142256712 ~2017
9959658451119919316902312 ~2017
9959693894319919387788712 ~2017
9960005084319920010168712 ~2017
9961116115119922232230312 ~2017
9961271683119922543366312 ~2017
9961590913119923181826312 ~2017
9962040926319924081852712 ~2017
996263402593028...43873714 2024
9963385788159780314728712 ~2018
9963854231919927708463912 ~2017
9963907910319927815820712 ~2017
9964553903359787323419912 ~2018
9964702811919929405623912 ~2017
9964890680319929781360712 ~2017
996550982812949...09117714 2024
9966606187119933212374312 ~2017
9967340741919934681483912 ~2017
9967843979919935687959912 ~2017
9967970864319935941728712 ~2017
Home
4.768.925 digits
e-mail
25-05-04