Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
16001654047132003308094312 ~2019
16003066717132006133434312 ~2019
1600354266132400...99195114 2024
16004120657932008241315912 ~2019
16005440269132010880538312 ~2019
16005611876332011223752712 ~2019
16007511605932015023211912 ~2019
16009280852332018561704712 ~2019
16009539181132019078362312 ~2019
16011077411932022154823912 ~2019
16011093386332022186772712 ~2019
16011793634332023587268712 ~2019
16012320803932024641607912 ~2019
16013338681132026677362312 ~2019
16013357096332026714192712 ~2019
16013868641932027737283912 ~2019
16014522413932029044827912 ~2019
16014580015132029160030312 ~2019
16015321904332030643808712 ~2019
16015775000332031550000712 ~2019
16016692531132033385062312 ~2019
16018366979932036733959912 ~2019
16019525731132039051462312 ~2019
16022620058332045240116712 ~2019
16025169788332050339576712 ~2019
Exponent Prime Factor Dig. Year
1602632621773538...88681715 2023
16026731725132053463450312 ~2019
16027719421132055438842312 ~2019
16027867855132055735710312 ~2019
16029853934332059707868712 ~2019
16031663089132063326178312 ~2019
16033017269932066034539912 ~2019
16036998445132073996890312 ~2019
16037490391132074980782312 ~2019
16039780069132079560138312 ~2019
16041116539132082233078312 ~2019
16041979949932083959899912 ~2019
16042599055132085198110312 ~2019
16045960169932091920339912 ~2019
16047368995132094737990312 ~2019
16047649481932095298963912 ~2019
16048130765932096261531912 ~2019
16049940755932099881511912 ~2019
16050947375932101894751912 ~2019
16051329775132102659550312 ~2019
16051693052332103386104712 ~2019
16051697909932103395819912 ~2019
16053098315932106196631912 ~2019
16054672507132109345014312 ~2019
16055647333132111294666312 ~2019
Exponent Prime Factor Dig. Year
16055682089932111364179912 ~2019
16059078872332118157744712 ~2019
16059676838332119353676712 ~2019
16059706177132119412354312 ~2019
16060080091132120160182312 ~2019
16063863613132127727226312 ~2019
16066201577932132403155912 ~2019
16066639634332133279268712 ~2019
16067044307932134088615912 ~2019
16068467261932136934523912 ~2019
16071589577932143179155912 ~2019
16071889387132143778774312 ~2019
16072163695132144327390312 ~2019
16073270507932146541015912 ~2019
16073927264332147854528712 ~2019
16074457520332148915040712 ~2019
16074511304332149022608712 ~2019
16075780877932151561755912 ~2019
16076251505932152503011912 ~2019
16076290430332152580860712 ~2019
16076670085132153340170312 ~2019
16076811473932153622947912 ~2019
16077040267132154080534312 ~2019
16077155915932154311831912 ~2019
16078224397132156448794312 ~2019
Exponent Prime Factor Dig. Year
16079072549932158145099912 ~2019
16079534161132159068322312 ~2019
16080600949132161201898312 ~2019
16082305460332164610920712 ~2019
16083978925132167957850312 ~2019
1608684133371103...54918315 2023
16086933584332173867168712 ~2019
16087958660332175917320712 ~2019
16090042793932180085587912 ~2019
1609138349691750...44627315 2023
16092351179932184702359912 ~2019
16093688051932187376103912 ~2019
16093964609932187929219912 ~2019
16094659334332189318668712 ~2019
1609625526834249...90831314 2024
16096760755132193521510312 ~2019
1609738569475698...35923914 2024
16097486687932194973375912 ~2019
16102182247132204364494312 ~2019
16103217079132206434158312 ~2019
16103300369932206600739912 ~2019
16103449051132206898102312 ~2019
16104493735132208987470312 ~2019
16104512624332209025248712 ~2019
16104918829132209837658312 ~2019
Home
4.679.597 digits
e-mail
25-03-23