Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10551017817763306106906312 ~2018
10551462383921102924767912 ~2017
10551577136321103154272712 ~2017
10551796618163310779708712 ~2018
10552659176321105318352712 ~2017
10553282353121106564706312 ~2017
10553790967121107581934312 ~2017
10553864867921107729735912 ~2017
10554661849121109323698312 ~2017
10557733898321115467796712 ~2017
10558649600321117299200712 ~2017
10559331881363355991287912 ~2018
10559488145921118976291912 ~2017
10559514374321119028748712 ~2017
10560764647121121529294312 ~2017
10561063777121122127554312 ~2017
10561164197921122328395912 ~2017
10561821985121123643970312 ~2017
10562959327121125918654312 ~2017
10564563899921129127799912 ~2017
10564895876321129791752712 ~2017
10565251940321130503880712 ~2017
10565310722321130621444712 ~2017
10565756089121131512178312 ~2017
10567528421921135056843912 ~2017
Exponent Prime Factor Dig. Year
10568038771363408232627912 ~2018
10568285936321136571872712 ~2017
10568309762321136619524712 ~2017
10569263987921138527975912 ~2017
10569467169763416803018312 ~2018
10569674354321139348708712 ~2017
10569735611921139471223912 ~2017
10570601117921141202235912 ~2017
10571126156321142252312712 ~2017
10571826821921143653643912 ~2017
10573212643121146425286312 ~2017
10573401115121146802230312 ~2017
10574670331121149340662312 ~2017
10575262994321150525988712 ~2017
10575558743921151117487912 ~2017
10576444409921152888819912 ~2017
10576957085363461742511912 ~2018
10577246543921154493087912 ~2017
10577752349921155504699912 ~2017
10577844062321155688124712 ~2017
10578073933121156147866312 ~2017
10578152341121156304682312 ~2017
10579092596321158185192712 ~2017
10579524797921159049595912 ~2017
10579548096163477288576712 ~2018
Exponent Prime Factor Dig. Year
10580833813121161667626312 ~2017
10581419623121162839246312 ~2017
10582248960163493493760712 ~2018
10582349762321164699524712 ~2017
10582900142321165800284712 ~2017
10582948640321165897280712 ~2017
10583484317363500905903912 ~2018
10584995677763509974066312 ~2018
10585858736321171717472712 ~2017
10585884685121171769370312 ~2017
10586872657121173745314312 ~2017
10586894491121173788982312 ~2017
10588826217763532957306312 ~2018
1058905988878577...09847114 2023
1059020489712719...75752915 2025
10590279379121180558758312 ~2017
10590597721121181195442312 ~2017
10590988740163545932440712 ~2018
10591312742321182625484712 ~2017
10591433756321182867512712 ~2017
10591633409921183266819912 ~2017
10591891799921183783599912 ~2017
10592181493121184362986312 ~2017
10592303813921184607627912 ~2017
10592550809921185101619912 ~2017
Exponent Prime Factor Dig. Year
10592651924321185303848712 ~2017
1059271211474237...45880114 2024
10594165202321188330404712 ~2017
10594642781921189285563912 ~2017
10594974764321189949528712 ~2017
10595039092163570234552712 ~2018
10596038156321192076312712 ~2017
10597014902321194029804712 ~2017
10597541983121195083966312 ~2017
10598009312321196018624712 ~2017
10598381347121196762694312 ~2017
10598567597921197135195912 ~2017
10598761243121197522486312 ~2017
10598978431121197956862312 ~2017
10599659725121199319450312 ~2017
10600421531921200843063912 ~2017
10601436659921202873319912 ~2017
10602059780321204119560712 ~2017
10602127307921204254615912 ~2017
10602436868321204873736712 ~2017
10602518748163615112488712 ~2018
10602880838321205761676712 ~2017
10602939379121205878758312 ~2017
10604134208321208268416712 ~2017
10604210786321208421572712 ~2017
Home
4.679.597 digits
e-mail
25-03-23