Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
15074701993130149403986312 ~2018
15076438475930152876951912 ~2018
15076853435930153706871912 ~2018
15080533543130161067086312 ~2018
15080973809930161947619912 ~2018
15081232097930162464195912 ~2018
1508522537091279...14523315 2025
15085452296330170904592712 ~2018
15085468394330170936788712 ~2018
15085482301130170964602312 ~2018
15086188691930172377383912 ~2018
15086902757930173805515912 ~2018
15090012067130180024134312 ~2018
15090388103930180776207912 ~2018
15093059747930186119495912 ~2018
15093983161130187966322312 ~2018
15096205898330192411796712 ~2018
1509661705577608...96072914 2024
15097106312330194212624712 ~2018
1510002439572416...03312114 2024
15100146907130200293814312 ~2018
15100542233930201084467912 ~2018
15100550075930201100151912 ~2018
15100880453930201760907912 ~2018
15102216098330204432196712 ~2018
Exponent Prime Factor Dig. Year
15103124081930206248163912 ~2018
15103638896330207277792712 ~2018
15103836761930207673523912 ~2018
15103892414330207784828712 ~2018
15106011451130212022902312 ~2018
15106095361130212190722312 ~2018
15106271485130212542970312 ~2018
15107421907130214843814312 ~2018
15107479681130214959362312 ~2018
15109844888330219689776712 ~2018
15110672647130221345294312 ~2018
15110868521930221737043912 ~2018
15111146054330222292108712 ~2018
15112484731130224969462312 ~2018
15113163883130226327766312 ~2018
15113200187930226400375912 ~2018
1511843337496984...19203914 2024
15118781285930237562571912 ~2018
15118985465930237970931912 ~2018
1511947264132267...96195114 2024
15119626973930239253947912 ~2018
15123525320330247050640712 ~2018
15124930423130249860846312 ~2018
15125188763930250377527912 ~2018
15127440397130254880794312 ~2018
Exponent Prime Factor Dig. Year
15129648677930259297355912 ~2018
15130455761930260911523912 ~2018
15130697606330261395212712 ~2018
15134217923930268435847912 ~2018
15135377888330270755776712 ~2018
15136300705130272601410312 ~2018
15137649863930275299727912 ~2018
15137947129130275894258312 ~2018
15139717753130279435506312 ~2018
15139742738330279485476712 ~2018
15140308147130280616294312 ~2018
15140490956330280981912712 ~2018
1514064993293361...85103914 2023
15140786221130281572442312 ~2018
15141175877930282351755912 ~2018
15141193663130282387326312 ~2018
15141697375130283394750312 ~2018
15142701773930285403547912 ~2018
1514444555873180...67327114 2024
15144894689930289789379912 ~2018
15145782013130291564026312 ~2018
15148143680330296287360712 ~2018
15148344211130296688422312 ~2018
15148840592330297681184712 ~2018
15149134940330298269880712 ~2018
Exponent Prime Factor Dig. Year
1514941021133201...05614316 2025
1514987604193060...60463914 2024
15150527491130301054982312 ~2018
15153862099130307724198312 ~2018
15154142972330308285944712 ~2018
15154274017130308548034312 ~2018
15156147443930312294887912 ~2018
15157109309930314218619912 ~2018
15157799483930315598967912 ~2018
15158031353930316062707912 ~2018
15159142471130318284942312 ~2018
1515969427939459...30283314 2024
15163509329930327018659912 ~2018
15164710379930329420759912 ~2018
15165697016330331394032712 ~2018
15166342808330332685616712 ~2018
15166437164330332874328712 ~2018
15166742909930333485819912 ~2018
15168045824330336091648712 ~2018
15169639088330339278176712 ~2018
15171565118330343130236712 ~2018
15173856493130347712986312 ~2018
15174045884330348091768712 ~2018
15174222626330348445252712 ~2018
15175385989130350771978312 ~2018
Home
4.679.597 digits
e-mail
25-03-23