Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
14972922577129945845154312 ~2018
14973177014329946354028712 ~2018
14973433087129946866174312 ~2018
14973479432329946958864712 ~2018
14974869788329949739576712 ~2018
14974995181129949990362312 ~2018
14975966693929951933387912 ~2018
14977830601129955661202312 ~2018
14977837088329955674176712 ~2018
1497883930372606...38843914 2024
14979251993929958503987912 ~2018
14980273598329960547196712 ~2018
14980357184329960714368712 ~2018
14980392626329960785252712 ~2018
14983722229129967444458312 ~2018
14983959218329967918436712 ~2018
14984888009929969776019912 ~2018
14987912191129975824382312 ~2018
14988314795929976629591912 ~2018
1498849957212518...28112914 2024
14989268273929978536547912 ~2018
14990002490329980004980712 ~2018
14990175650329980351300712 ~2018
14992367453929984734907912 ~2018
14993517439129987034878312 ~2018
Exponent Prime Factor Dig. Year
14993668501129987337002312 ~2018
14995553162329991106324712 ~2018
14997229745929994459491912 ~2018
14997358007929994716015912 ~2018
14997447535129994895070312 ~2018
14997516577129995033154312 ~2018
14997982682329995965364712 ~2018
14999419619929998839239912 ~2018
14999676343129999352686312 ~2018
14999939303929999878607912 ~2018
1500172674373840...46387314 2023
15002628098330005256196712 ~2018
15003273361130006546722312 ~2018
15003738188330007476376712 ~2018
15006912515930013825031912 ~2018
15010963603130021927206312 ~2018
15012082363130024164726312 ~2018
15012475387130024950774312 ~2018
15012926693930025853387912 ~2018
15016284541130032569082312 ~2018
15018009823130036019646312 ~2018
15019479241130038958482312 ~2018
15019756895930039513791912 ~2018
15020024834330040049668712 ~2018
15020764958330041529916712 ~2018
Exponent Prime Factor Dig. Year
15022022371130044044742312 ~2018
15022345043930044690087912 ~2018
15022759121930045518243912 ~2018
15027783866330055567732712 ~2018
15028223251130056446502312 ~2018
15029815307930059630615912 ~2018
15029918207930059836415912 ~2018
15030629753930061259507912 ~2018
15031074973130062149946312 ~2018
15032393579930064787159912 ~2018
15033401317130066802634312 ~2018
1503581837411894...15136714 2024
15036112520330072225040712 ~2018
15036217046330072434092712 ~2018
15036564329930073128659912 ~2018
15037650787130075301574312 ~2018
15038378132330076756264712 ~2018
15038953531130077907062312 ~2018
15039341477930078682955912 ~2018
15039624181130079248362312 ~2018
15042423209930084846419912 ~2018
15043624085930087248171912 ~2018
15044252813930088505627912 ~2018
15044993351930089986703912 ~2018
15045534779930091069559912 ~2018
Exponent Prime Factor Dig. Year
15045955639130091911278312 ~2018
15047664373130095328746312 ~2018
15049841119130099682238312 ~2018
15051097742330102195484712 ~2018
15052920539930105841079912 ~2018
15053694709130107389418312 ~2018
15053721764330107443528712 ~2018
15056511065930113022131912 ~2018
1505791472872529...74421714 2024
15057936509930115873019912 ~2018
15058101751130116203502312 ~2018
15058681682330117363364712 ~2018
15061768772330123537544712 ~2018
1506181520393283...14450314 2024
15066250739930132501479912 ~2018
1506736554372531...11341714 2024
15068070509930136141019912 ~2018
15068118788330136237576712 ~2018
15068386999130136773998312 ~2018
15069587312330139174624712 ~2018
15069778532330139557064712 ~2018
15070235819930140471639912 ~2018
15072768965930145537931912 ~2018
15073819507130147639014312 ~2018
1507443685011266...54084115 2025
Home
4.679.597 digits
e-mail
25-03-23