Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6801154741154409237928912 ~2017
6801223655913602447311912 ~2016
6801391111113602782222312 ~2016
6801521028768015210287112 ~2017
6801530744313603061488712 ~2016
6801684953913603369907912 ~2016
6801814762368018147623112 ~2017
6801868079913603736159912 ~2016
6801918019154415344152912 ~2017
6802276325340813657951912 ~2017
6802392341913604784683912 ~2016
6802449063740814694382312 ~2017
6802927196313605854392712 ~2016
6803359439913606718879912 ~2016
6803712502140822275012712 ~2017
6803948883168039488831112 ~2017
6804205009113608410018312 ~2016
6804224455113608448910312 ~2016
6804635948313609271896712 ~2016
6804833936313609667872712 ~2016
6804840301113609680602312 ~2016
6804984373113609968746312 ~2016
6805195169913610390339912 ~2016
6806026549113612053098312 ~2016
6806299364313612598728712 ~2016
Exponent Prime Factor Dig. Year
6806548127913613096255912 ~2016
6806571485913613142971912 ~2016
6806612438313613224876712 ~2016
6806699226140840195356712 ~2017
6806745639740840473838312 ~2017
6807281492313614562984712 ~2016
6807550660154460405280912 ~2017
6807619783113615239566312 ~2016
6808238347113616476694312 ~2016
6808736473113617472946312 ~2016
6809334521913618669043912 ~2016
6810051014313620102028712 ~2016
6810740942313621481884712 ~2016
6811300060154490400480912 ~2017
6811458023913622916047912 ~2016
6811706971113623413942312 ~2016
6811745984313623491968712 ~2016
6811839443913623678887912 ~2016
6811950187113623900374312 ~2016
6812019313113624038626312 ~2016
6812260555740873563334312 ~2017
6813217867113626435734312 ~2016
6813229535913626459071912 ~2016
681349907111539...90068714 2023
6813930524313627861048712 ~2016
Exponent Prime Factor Dig. Year
6813989383113627978766312 ~2016
6814499329113628998658312 ~2016
6814724906313629449812712 ~2016
6814870447113629740894312 ~2016
6815352308313630704616712 ~2016
6816634232954533073863312 ~2017
6816715519113633431038312 ~2016
6816860257113633720514312 ~2016
6817063781913634127563912 ~2016
6817330567113634661134312 ~2016
6817381235913634762471912 ~2016
6817579688313635159376712 ~2016
6817923750140907542500712 ~2017
6818040561740908243370312 ~2017
6818298731913636597463912 ~2016
6818574083913637148167912 ~2016
6818628097113637256194312 ~2016
6818682679113637365358312 ~2016
6819073178313638146356712 ~2016
6819235946313638471892712 ~2016
6819924265113639848530312 ~2016
6820306082313640612164712 ~2016
6820735345113641470690312 ~2016
6821601637113643203274312 ~2016
6821801108313643602216712 ~2016
Exponent Prime Factor Dig. Year
6822104649740932627898312 ~2017
6822256217913644512435912 ~2016
6822677833113645355666312 ~2016
6822704828313645409656712 ~2016
6822937423113645874846312 ~2016
6823152965913646305931912 ~2016
6823616963340941701779912 ~2017
6823863212313647726424712 ~2016
6823910575113647821150312 ~2016
6824210023754593680189712 ~2017
6824770034313649540068712 ~2016
6825109979913650219959912 ~2016
6826085206140956511236712 ~2017
6826101077340956606463912 ~2017
6826237259913652474519912 ~2016
6826626830313653253660712 ~2016
6827114970140962689820712 ~2017
6827204485754617635885712 ~2017
6827750315913655500631912 ~2016
6827981660313655963320712 ~2016
6828755978313657511956712 ~2016
6828846505113657693010312 ~2016
6829312762140975876572712 ~2017
6830600267913661200535912 ~2016
6830840791113661681582312 ~2016
Home
4.768.925 digits
e-mail
25-05-04