Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7661277463115322554926312 ~2016
7661440193915322880387912 ~2016
7661569196961292553575312 ~2017
7661791160315323582320712 ~2016
7662084289115324168578312 ~2016
7662179312315324358624712 ~2016
7664342054315328684108712 ~2016
7664695733915329391467912 ~2016
7664858971115329717942312 ~2016
7665068167115330136334312 ~2016
7665603187745993619126312 ~2017
7667298479915334596959912 ~2016
7667484667346004908003912 ~2017
766771252632330...07995314 2023
7668636518315337273036712 ~2016
7669232600315338465200712 ~2016
7669813013915339626027912 ~2016
7670670470315341340940712 ~2016
7670834958146025009748712 ~2017
7671259903115342519806312 ~2016
7671279013115342558026312 ~2016
7671330365915342660731912 ~2016
7672698560315345397120712 ~2016
7672970358146037822148712 ~2017
7673833553915347667107912 ~2016
Exponent Prime Factor Dig. Year
7674643058315349286116712 ~2016
7675044005915350088011912 ~2016
7675059757115350119514312 ~2016
7675159901915350319803912 ~2016
7675314149915350628299912 ~2016
7675705340315351410680712 ~2016
7675786976315351573952712 ~2016
7676369669915352739339912 ~2016
7676525185115353050370312 ~2016
7676875795346061254771912 ~2017
7676984651915353969303912 ~2016
7677185402315354370804712 ~2016
7677342782315354685564712 ~2016
7677476455115354952910312 ~2016
7677979082315355958164712 ~2016
7678325438961426603511312 ~2018
7678678774146072072644712 ~2017
7678765048761430120389712 ~2018
7678892171915357784343912 ~2016
7679196464315358392928712 ~2016
7679781236315359562472712 ~2016
7680652849746083917098312 ~2017
7681295863746087775182312 ~2017
7681489007915362978015912 ~2016
7681812209915363624419912 ~2016
Exponent Prime Factor Dig. Year
7682689409915365378819912 ~2016
768278879571167...69464115 2025
7682976865115365953730312 ~2016
7683866822315367733644712 ~2016
7683955856315367911712712 ~2016
7684179713915368359427912 ~2016
7685168191115370336382312 ~2016
7685338896146112033376712 ~2017
7685525098161484200784912 ~2018
7686113393915372226787912 ~2016
7686124615115372249230312 ~2016
7687591370315375182740712 ~2016
7687739213961501913711312 ~2018
7690272887915380545775912 ~2016
7690425769115380851538312 ~2016
7690494206315380988412712 ~2016
7690526762315381053524712 ~2016
7690867466315381734932712 ~2016
7690875543746145253262312 ~2017
7691024156315382048312712 ~2016
7692478813115384957626312 ~2016
7692603743915385207487912 ~2016
7692739906146156439436712 ~2017
7692778861115385557722312 ~2016
7693102697915386205395912 ~2016
Exponent Prime Factor Dig. Year
7693140469115386280938312 ~2016
7694316218315388632436712 ~2016
7694369792315388739584712 ~2016
7694734286315389468572712 ~2016
7695171061115390342122312 ~2016
7695492995915390985991912 ~2016
7695552373115391104746312 ~2016
7695686983115391373966312 ~2016
7695913547915391827095912 ~2016
7697136728961577093831312 ~2018
7697648893115395297786312 ~2016
7697766344315395532688712 ~2016
7697982943115395965886312 ~2016
769998231673649...18115914 2023
770004284872541...40071114 2025
7700284187915400568375912 ~2016
7700882923115401765846312 ~2016
7701175363115402350726312 ~2016
7701342795177013427951112 ~2018
7702449856161619598848912 ~2018
7702484689115404969378312 ~2016
7703984024315407968048712 ~2016
7704252505161634020040912 ~2018
7704426407915408852815912 ~2016
7705425401915410850803912 ~2016
Home
4.768.925 digits
e-mail
25-05-04