Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9359461993174875695944912 ~2018
9359914985918719829971912 ~2017
9360927887918721855775912 ~2017
9361352063918722704127912 ~2017
9362545939118725091878312 ~2017
9362730070774901840565712 ~2018
9362776115918725552231912 ~2017
9364256509118728513018312 ~2017
9364288549118728577098312 ~2017
9365060263118730120526312 ~2017
9365088431918730176863912 ~2017
9365302003118730604006312 ~2017
936557559431371...70055315 2024
9367163333918734326667912 ~2017
9367771111118735542222312 ~2017
9367802294318735604588712 ~2017
9367866109118735732218312 ~2017
9368507329118737014658312 ~2017
9368805854318737611708712 ~2017
9369496235356216977411912 ~2018
9369643784318739287568712 ~2017
9370089745756220538474312 ~2018
937041626592083...75361715 2025
9371018674174968149392912 ~2018
9371469750156228818500712 ~2018
Exponent Prime Factor Dig. Year
9372317069918744634139912 ~2017
9372466637974979733103312 ~2018
9372944512774983556101712 ~2018
9373169956174985359648912 ~2018
9373611917356241671503912 ~2018
9374061079118748122158312 ~2017
9374431241918748862483912 ~2017
9375061910318750123820712 ~2017
9375314599118750629198312 ~2017
9376576820318753153640712 ~2017
9377731727918755463455912 ~2017
9378116395118756232790312 ~2017
9378447095918756894191912 ~2017
9378816509918757633019912 ~2017
9378825481118757650962312 ~2017
9378936881918757873763912 ~2017
9379109084318758218168712 ~2017
9379704619118759409238312 ~2017
9380636900318761273800712 ~2017
9380749091918761498183912 ~2017
9380770427918761540855912 ~2017
9381060578318762121156712 ~2017
9381276740318762553480712 ~2017
9381709639118763419278312 ~2017
9382017116318764034232712 ~2017
Exponent Prime Factor Dig. Year
9382043114318764086228712 ~2017
9383327395118766654790312 ~2017
9383347955918766695911912 ~2017
9383921485118767842970312 ~2017
9385132663118770265326312 ~2017
9385471823918770943647912 ~2017
9385612490318771224980712 ~2017
9385996076318771992152712 ~2017
9386422292318772844584712 ~2017
9387225617356323353703912 ~2018
9387826921118775653842312 ~2017
9388744865918777489731912 ~2017
9388949773118777899546312 ~2017
938949378473098...48951114 2024
938979493378863...17412914 2024
9390102482975120819863312 ~2018
9390148889918780297779912 ~2017
9390657410318781314820712 ~2017
9391185133118782370266312 ~2017
9391261496318782522992712 ~2017
9391676657918783353315912 ~2017
9392045755118784091510312 ~2017
9392084383775136675069712 ~2018
9393577310318787154620712 ~2017
9394423884156366543304712 ~2018
Exponent Prime Factor Dig. Year
9394957248156369743488712 ~2018
9395499919118790999838312 ~2017
9395697251918791394503912 ~2017
9395771480318791542960712 ~2017
9396069961118792139922312 ~2017
9396257044156377542264712 ~2018
9396885663756381313982312 ~2018
9397136864318794273728712 ~2017
9397176673756383060042312 ~2018
9397488653918794977307912 ~2017
9397642138156385852828712 ~2018
9398333078318796666156712 ~2017
9398810869118797621738312 ~2017
9399142061918798284123912 ~2017
9399730193918799460387912 ~2017
9399898607356399391643912 ~2018
9400501907918801003815912 ~2017
9401004818318802009636712 ~2017
9402022136318804044272712 ~2017
9402896143118805792286312 ~2017
9403091585918806183171912 ~2017
9404653589356427921535912 ~2018
9404794004318809588008712 ~2017
9405387643118810775286312 ~2017
9406075148318812150296712 ~2017
Home
4.724.182 digits
e-mail
25-04-13