Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10114793642320229587284712 ~2017
10115543459920231086919912 ~2017
10116272405920232544811912 ~2017
10116483206320232966412712 ~2017
10116603403120233206806312 ~2017
10116934172320233868344712 ~2017
10117316593760703899562312 ~2018
10117898648320235797296712 ~2017
10118149267360708895603912 ~2018
10118385733120236771466312 ~2017
10119623347120239246694312 ~2017
10120568512160723411072712 ~2018
10121049369760726296218312 ~2018
10121758004320243516008712 ~2017
10121947129120243894258312 ~2017
10123352543920246705087912 ~2017
1012342032232429...77352114 2024
10124445997120248891994312 ~2017
10125982921360755897527912 ~2018
10126021187920252042375912 ~2017
10126050427360756302563912 ~2018
10126055022160756330132712 ~2018
10127604954160765629724712 ~2018
10128167839120256335678312 ~2017
10128824078320257648156712 ~2017
Exponent Prime Factor Dig. Year
10128869669920257739339912 ~2017
10129858723120259717446312 ~2017
10130832671920261665343912 ~2017
10131511957120263023914312 ~2017
10133534819920267069639912 ~2017
10133918582320267837164712 ~2017
10134193517920268387035912 ~2017
10135275379120270550758312 ~2017
10135570716160813424296712 ~2018
10135906931920271813863912 ~2017
10135963640320271927280712 ~2017
10136209700320272419400712 ~2017
10136378922160818273532712 ~2018
10137038695120274077390312 ~2017
10137261115760823566694312 ~2018
10137525392320275050784712 ~2017
10137854228320275708456712 ~2017
10137953665120275907330312 ~2017
10138022364160828134184712 ~2018
10139005657120278011314312 ~2017
10139061410320278122820712 ~2017
10139732719120279465438312 ~2017
10139925673360839554039912 ~2018
10140083024320280166048712 ~2017
10140549319120281098638312 ~2017
Exponent Prime Factor Dig. Year
10140584497120281168994312 ~2017
10140984001120281968002312 ~2017
10141002467920282004935912 ~2017
10142560253920285120507912 ~2017
10143760946320287521892712 ~2017
10143846581920287693163912 ~2017
10143889415920287778831912 ~2017
10145078583760870471502312 ~2018
10145373947920290747895912 ~2017
10145446577920290893155912 ~2017
10145620550320291241100712 ~2017
10145840636320291681272712 ~2017
1014592106635438...91536914 2024
10146291289120292582578312 ~2017
10146495361760878972170312 ~2018
10146912721120293825442312 ~2017
10147778724160886672344712 ~2018
10147815055120295630110312 ~2017
10148421566320296843132712 ~2017
10148913626320297827252712 ~2017
10148990972320297981944712 ~2017
10149041722160894250332712 ~2018
10149656723920299313447912 ~2017
10150611661120301223322312 ~2017
10151464538320302929076712 ~2017
Exponent Prime Factor Dig. Year
10153026644320306053288712 ~2017
10153073990320306147980712 ~2017
10153297421920306594843912 ~2017
10153391305120306782610312 ~2017
10153469769760920818618312 ~2018
10154139679120308279358312 ~2017
10154805191920309610383912 ~2017
10155452623120310905246312 ~2017
10155666998320311333996712 ~2017
10155958304320311916608712 ~2017
10156408381120312816762312 ~2017
10156596703120313193406312 ~2017
10157122135120314244270312 ~2017
10157150858320314301716712 ~2017
10158949706320317899412712 ~2017
10159277017120318554034312 ~2017
10159496999920318993999912 ~2017
10159562303920319124607912 ~2017
10159675334320319350668712 ~2017
10159976393920319952787912 ~2017
10161685412320323370824712 ~2017
10163150827120326301654312 ~2017
10163192264320326384528712 ~2017
10163665040320327330080712 ~2017
10163733296320327466592712 ~2017
Home
4.724.182 digits
e-mail
25-04-13