Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7184177078314368354156712 ~2016
7184278807114368557614312 ~2016
7184297696314368595392712 ~2016
7184326649914368653299912 ~2016
718439682231495...84028715 2024
7184872409914369744819912 ~2016
7184905421914369810843912 ~2016
7185117669743110706018312 ~2017
7185395351914370790703912 ~2016
7185412448314370824896712 ~2016
7185523812771855238127112 ~2018
7185843533914371687067912 ~2016
7186231666371862316663112 ~2018
7186454255343118725531912 ~2017
7186758727114373517454312 ~2016
7186815607114373631214312 ~2016
7186938728314373877456712 ~2016
7186980242314373960484712 ~2016
7187210591914374421183912 ~2016
7187361632314374723264712 ~2016
7187579863743125479182312 ~2017
7187644040314375288080712 ~2016
7187842343343127054059912 ~2017
7188178639971881786399112 ~2018
7188788467114377576934312 ~2016
Exponent Prime Factor Dig. Year
7189066987114378133974312 ~2016
7189092608314378185216712 ~2016
7189475000314378950000712 ~2016
7189870309971898703099112 ~2018
7189889321914379778643912 ~2016
7189945015114379890030312 ~2016
7190183987914380367975912 ~2016
7190803193914381606387912 ~2016
7191188785114382377570312 ~2016
7191514933343149089599912 ~2017
7191661453114383322906312 ~2016
7192221289114384442578312 ~2016
7192293476314384586952712 ~2016
7193062712314386125424712 ~2016
7193077669114386155338312 ~2016
7193126762314386253524712 ~2016
7193148734957545189879312 ~2017
7194000871114388001742312 ~2016
7194510422314389020844712 ~2016
7194666146314389332292712 ~2016
7194903695914389807391912 ~2016
7195097941157560783528912 ~2017
7195260736157562085888912 ~2017
7195670677114391341354312 ~2016
7196323305743177939834312 ~2017
Exponent Prime Factor Dig. Year
7196394020314392788040712 ~2016
719650011771655...27071114 2023
7196683015114393366030312 ~2016
7196794157914393588315912 ~2016
7197478086143184868516712 ~2017
7197516457114395032914312 ~2016
7197768709114395537418312 ~2016
7197812924314395625848712 ~2016
7198426913914396853827912 ~2016
7198440814157587526512912 ~2017
7198964647114397929294312 ~2016
7199096269757592770157712 ~2017
7199249381914398498763912 ~2016
7199436859114398873718312 ~2016
7199469257914398938515912 ~2016
7200538418957604307351312 ~2017
7200727015114401454030312 ~2016
7200806242157606449936912 ~2017
7200835100314401670200712 ~2016
7203217248143219303488712 ~2017
7203599458157628795664912 ~2017
7204259471914408518943912 ~2016
7204408639114408817278312 ~2016
7205041309114410082618312 ~2016
7205102495914410204991912 ~2016
Exponent Prime Factor Dig. Year
7205938979914411877959912 ~2016
7206324871114412649742312 ~2016
7206525529157652204232912 ~2017
7207008716314414017432712 ~2016
7207029902957656239223312 ~2017
7207378199914414756399912 ~2016
7207410361114414820722312 ~2016
7207897469914415794939912 ~2016
7208072879914416145759912 ~2016
7208272199914416544399912 ~2016
7208300131114416600262312 ~2016
7208565097114417130194312 ~2016
7209027113914418054227912 ~2016
7209412738143256476428712 ~2017
7209429461914418858923912 ~2016
7209473618314418947236712 ~2016
7210002995914420005991912 ~2016
7210423745914420847491912 ~2016
7210592569114421185138312 ~2016
7210842181114421684362312 ~2016
7211125409343266752455912 ~2017
7211179333743267076002312 ~2017
7211524286314423048572712 ~2016
7213095968314426191936712 ~2016
7213155638314426311276712 ~2016
Home
4.768.925 digits
e-mail
25-05-04