Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10732411190321464822380712 ~2017
10732652726321465305452712 ~2017
10733109133121466218266312 ~2017
10733421863364400531179912 ~2018
10733615756321467231512712 ~2017
10734279151121468558302312 ~2017
10735497157121470994314312 ~2017
10735523569364413141415912 ~2018
10736457314321472914628712 ~2017
10737035653121474071306312 ~2017
10737553927764425323566312 ~2018
10739786681921479573363912 ~2017
10740137210321480274420712 ~2017
10741319102321482638204712 ~2017
10741508813921483017627912 ~2017
10741938212321483876424712 ~2017
10742191333121484382666312 ~2017
10742380343921484760687912 ~2017
10742736960164456421760712 ~2018
10743740246321487480492712 ~2017
10743828866321487657732712 ~2017
10743983696321487967392712 ~2017
10744210823921488421647912 ~2017
10744953139121489906278312 ~2017
1074545607012578...56824114 2024
Exponent Prime Factor Dig. Year
10746009740321492019480712 ~2017
10746247075764477482454312 ~2018
10750094887121500189774312 ~2017
10750141393121500282786312 ~2017
10752082949921504165899912 ~2017
10752176581121504353162312 ~2017
10752598235921505196471912 ~2017
10753105285121506210570312 ~2017
10753212613364519275679912 ~2018
10753968659921507937319912 ~2017
10756739677121513479354312 ~2017
10756934095364541604571912 ~2018
10758187421921516374843912 ~2017
10758558863921517117727912 ~2017
10759456278164556737668712 ~2018
10760259469121520518938312 ~2017
10760503291121521006582312 ~2017
10760692381121521384762312 ~2017
10761143063921522286127912 ~2017
10761637271921523274543912 ~2017
10762349778164574098668712 ~2018
10762606592321525213184712 ~2017
10763043875921526087751912 ~2017
10763073245921526146491912 ~2017
10765743599921531487199912 ~2017
Exponent Prime Factor Dig. Year
10766080580321532161160712 ~2017
10766539169921533078339912 ~2017
10767243218321534486436712 ~2017
10768490537921536981075912 ~2017
10768548092321537096184712 ~2017
1076863080113962...34804914 2023
10768714310321537428620712 ~2017
10768993361921537986723912 ~2017
10769019085121538038170312 ~2017
10769463122321538926244712 ~2017
10771038853121542077706312 ~2017
10771195556321542391112712 ~2017
10772508212321545016424712 ~2017
10772656895921545313791912 ~2017
10773308251121546616502312 ~2017
10773909394164643456364712 ~2018
10774654345121549308690312 ~2017
10775771598164654629588712 ~2018
10776219607121552439214312 ~2017
10776416177921552832355912 ~2017
10776499267764658995606312 ~2018
10776667259921553334519912 ~2017
10777174489121554348978312 ~2017
10777781792321555563584712 ~2017
10777997647121555995294312 ~2017
Exponent Prime Factor Dig. Year
10778278951121556557902312 ~2017
10779421208321558842416712 ~2017
10780108291364680649747912 ~2018
10780152865121560305730312 ~2017
10780552592321561105184712 ~2017
10780577552321561155104712 ~2017
10780594505921561189011912 ~2017
10780636327121561272654312 ~2017
10780937917764685627506312 ~2018
10781401712321562803424712 ~2017
10783000415364698002491912 ~2018
10784234257121568468514312 ~2017
1078466820893451...26848114 2024
10785517279121571034558312 ~2017
10786180963364717085779912 ~2018
10786345418321572690836712 ~2017
10787066521121574133042312 ~2017
10787070679121574141358312 ~2017
10787078737121574157474312 ~2017
10787754535121575509070312 ~2017
10787907229121575814458312 ~2017
10788906805121577813610312 ~2017
10788933505121577867010312 ~2017
10789566169121579132338312 ~2017
10789894445921579788891912 ~2017
Home
4.679.597 digits
e-mail
25-03-23