Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7743066715761944533725712 ~2018
7744550281161956402248912 ~2018
7744927861115489855722312 ~2016
7745340395346472042371912 ~2017
7746034436961968275495312 ~2018
7746373884146478243304712 ~2017
7747542631346485255787912 ~2017
7747759153746486554922312 ~2017
7747816030161982528240912 ~2018
7748025727115496051454312 ~2016
7749438272315498876544712 ~2016
7749572588315499145176712 ~2016
7750115001746500690010312 ~2017
7750640252962005122023312 ~2018
7750645922962005167383312 ~2018
7752146077115504292154312 ~2016
7753320788315506641576712 ~2016
7753617893915507235787912 ~2016
7753889071115507778142312 ~2016
7753951337915507902675912 ~2016
7754256743915508513487912 ~2016
775459183913923...70584714 2023
7754623855115509247710312 ~2016
7754646335915509292671912 ~2016
7754719457915509438915912 ~2016
Exponent Prime Factor Dig. Year
7754819554146528917324712 ~2017
7755541633115511083266312 ~2016
7755554549915511109099912 ~2016
7755637640962045101127312 ~2018
7755965612315511931224712 ~2016
7756140035915512280071912 ~2016
7756198045346537188271912 ~2017
7756351010962050808087312 ~2018
7756804951115513609902312 ~2016
7756949783962055598271312 ~2018
7758311816315516623632712 ~2016
7758531809915517063619912 ~2016
7758798473915517596947912 ~2016
7758895837115517791674312 ~2016
7759079497746554476986312 ~2017
7759507709915519015419912 ~2016
7759610189915519220379912 ~2016
7760053771115520107542312 ~2016
7760297809115520595618312 ~2016
7760798947746564793686312 ~2017
7761655616315523311232712 ~2016
7761746712146570480272712 ~2017
7762194953915524389907912 ~2016
7762242323915524484647912 ~2016
776232528432872...55191114 2023
Exponent Prime Factor Dig. Year
7762697101115525394202312 ~2016
7762938569915525877139912 ~2016
7762950800315525901600712 ~2016
7763159360315526318720712 ~2016
7763512495115527024990312 ~2016
7763706823115527413646312 ~2016
7763725554146582353324712 ~2017
7763811373346582868239912 ~2017
7763835320315527670640712 ~2016
7765422830315530845660712 ~2016
7766052029915532104059912 ~2016
7766278415915532556831912 ~2016
7767166034315534332068712 ~2016
7767239411915534478823912 ~2016
7768284386315536568772712 ~2016
7768535713115537071426312 ~2016
7769539121915539078243912 ~2016
7769986939162159895512912 ~2018
7770365077162162920616912 ~2018
7770593201915541186403912 ~2016
7771127389115542254778312 ~2016
7771168331915542336663912 ~2016
7771522568315543045136712 ~2016
7771560145115543120290312 ~2016
7771843577915543687155912 ~2016
Exponent Prime Factor Dig. Year
7771858709915543717419912 ~2016
7771859809162174878472912 ~2018
7772675461346636052767912 ~2017
7773030416315546060832712 ~2016
7773650195915547300391912 ~2016
7773774811162190198488912 ~2018
7774389871162195118968912 ~2018
7774785231746648711390312 ~2017
7774938013162199504104912 ~2018
7774995563915549991127912 ~2016
7775282827115550565654312 ~2016
7775446928315550893856712 ~2016
7775545483115551090966312 ~2016
7777108039115554216078312 ~2016
7777205194377772051943112 ~2018
7777542078777775420787112 ~2018
777754445599970...92463914 2024
7777856900315555713800712 ~2016
7778336477346670018863912 ~2017
7778392831115556785662312 ~2016
7778580248315557160496712 ~2016
7779075062315558150124712 ~2016
7779523865915559047731912 ~2016
7779713333915559426667912 ~2016
7779842192315559684384712 ~2016
Home
4.768.925 digits
e-mail
25-05-04