Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10789983563921579967127912 ~2017
10790115349764740692098312 ~2018
10791001549121582003098312 ~2017
10792112000321584224000712 ~2017
10792637875121585275750312 ~2017
10793014172321586028344712 ~2017
10793970769121587941538312 ~2017
10794620678321589241356712 ~2017
10794736147121589472294312 ~2017
10795634054321591268108712 ~2017
10796361010164778166060712 ~2018
1079641542473562...90151114 2023
10797582293921595164587912 ~2017
10799180967764795085806312 ~2018
10799183029121598366058312 ~2017
10800122162321600244324712 ~2017
10800310591121600621182312 ~2017
10800584803121601169606312 ~2017
10801498096164808988576712 ~2018
10802284862321604569724712 ~2017
10802397109121604794218312 ~2017
1080253633872482...06332715 2023
10803014420321606028840712 ~2017
10803084056321606168112712 ~2017
10803288643121606577286312 ~2017
Exponent Prime Factor Dig. Year
10803910080164823460480712 ~2018
10804197833921608395667912 ~2017
10804288994321608577988712 ~2017
10804796395364828778371912 ~2018
10806069824321612139648712 ~2017
10806819463121613638926312 ~2017
10807177662164843065972712 ~2018
10808467555121616935110312 ~2017
10808572127921617144255912 ~2017
10809298843121618597686312 ~2017
10811268367121622536734312 ~2017
10811614544321623229088712 ~2017
10811924012321623848024712 ~2017
10811952587921623905175912 ~2017
10812394577364874367463912 ~2018
10812617893121625235786312 ~2017
10812758426321625516852712 ~2017
10813622072321627244144712 ~2017
10814685517121629371034312 ~2017
10815969221921631938443912 ~2017
10817063359121634126718312 ~2017
10817457380321634914760712 ~2017
10818616795121637233590312 ~2017
10819518578321639037156712 ~2017
10819541983121639083966312 ~2017
Exponent Prime Factor Dig. Year
1082019869572661...79142314 2024
10820552516321641105032712 ~2017
10821155522321642311044712 ~2017
10821279932321642559864712 ~2017
10821842060321643684120712 ~2017
1082199087014309...29122316 2023
10822073029121644146058312 ~2017
10822478519921644957039912 ~2017
10822540123364935240739912 ~2018
10822749319121645498638312 ~2017
10823293406321646586812712 ~2017
10823537291921647074583912 ~2017
10823929586321647859172712 ~2017
10824386618321648773236712 ~2017
10825501502321651003004712 ~2017
10826823332321653646664712 ~2017
10827594758321655189516712 ~2017
10828064039921656128079912 ~2017
10828090031921656180063912 ~2017
10828248884321656497768712 ~2017
1082935705313614...43247915 2025
10829512337921659024675912 ~2017
10830248899364981493395912 ~2018
10831935950321663871900712 ~2017
10832132449121664264898312 ~2017
Exponent Prime Factor Dig. Year
10832775845921665551691912 ~2017
10833003766164998022596712 ~2018
10833744461921667488923912 ~2017
10834300987121668601974312 ~2017
10834375727921668751455912 ~2017
10834787857121669575714312 ~2017
10835608268321671216536712 ~2017
10836569144321673138288712 ~2017
10838798357921677596715912 ~2017
10838904128321677808256712 ~2017
10840172723365041036339912 ~2018
10840278653921680557307912 ~2017
10840991408321681982816712 ~2017
10841217656321682435312712 ~2017
10841308103921682616207912 ~2017
10842717787121685435574312 ~2017
10843157969921686315939912 ~2017
10843553051365061318307912 ~2018
10843701219765062207318312 ~2018
10843934088165063604528712 ~2018
10844980741365069884447912 ~2018
10845547280321691094560712 ~2017
10845721739921691443479912 ~2017
10845922357121691844714312 ~2017
10846368230321692736460712 ~2017
Home
4.679.597 digits
e-mail
25-03-23