Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7526686340315053372680712 ~2016
7527196772315054393544712 ~2016
7527219359915054438719912 ~2016
7527738536315055477072712 ~2016
7527822116315055644232712 ~2016
7527996523115055993046312 ~2016
7527999410315055998820712 ~2016
7529046681745174280090312 ~2017
7529114159915058228319912 ~2016
7529669461115059338922312 ~2016
7529692819115059385638312 ~2016
7530437881345182627287912 ~2017
7530519675175305196751112 ~2018
7531070461115062140922312 ~2016
7531839229115063678458312 ~2016
7531861052960254888423312 ~2017
7531903225115063806450312 ~2016
753340060794158...35560914 2024
7533479278760267834229712 ~2017
7533680486315067360972712 ~2016
7533829583915067659167912 ~2016
7533954217115067908434312 ~2016
7534140125915068280251912 ~2016
7534201039760273608317712 ~2017
7534555376315069110752712 ~2016
Exponent Prime Factor Dig. Year
7535273307745211639846312 ~2017
7536390133115072780266312 ~2016
7536866716375368667163112 ~2018
7536944023345221664139912 ~2017
7537001126315074002252712 ~2016
7537462781915074925563912 ~2016
7538046785915076093571912 ~2016
7538414621960307316975312 ~2017
7538510285345231061711912 ~2017
7538523537745231141226312 ~2017
7538781932315077563864712 ~2016
7538987348315077974696712 ~2016
7540791979115081583958312 ~2016
7540891429115081782858312 ~2016
7540926349115081852698312 ~2016
7541232361115082464722312 ~2016
7541305918160330447344912 ~2017
7541515444760332123557712 ~2017
754229134577225...09180714 2023
7542986605115085973210312 ~2016
7544319765745265918594312 ~2017
7544523956315089047912712 ~2016
7545521672315091043344712 ~2016
7545801703115091603406312 ~2016
7545937579115091875158312 ~2016
Exponent Prime Factor Dig. Year
7546638605345279831631912 ~2017
7546641222145279847332712 ~2017
7547261174315094522348712 ~2016
7547614280315095228560712 ~2016
7547874962315095749924712 ~2016
7547911493960383291951312 ~2017
7548595901915097191803912 ~2016
7549150886315098301772712 ~2016
7549518127115099036254312 ~2016
7549521822145297130932712 ~2017
7549787897915099575795912 ~2016
7550759265175507592651112 ~2018
7550904103345305424619912 ~2017
7551285857915102571715912 ~2016
7551621200315103242400712 ~2016
7551682157345310092943912 ~2017
7551947715745311686294312 ~2017
7552320223115104640446312 ~2016
7552558021115105116042312 ~2016
7552564406315105128812712 ~2016
7552972340315105944680712 ~2016
7553235128315106470256712 ~2016
7553530889915107061779912 ~2016
7553554250315107108500712 ~2016
7553949322375539493223112 ~2018
Exponent Prime Factor Dig. Year
7554070777115108141554312 ~2016
7554158768315108317536712 ~2016
7554422251345326533507912 ~2017
7554712481345328274887912 ~2017
7554761447915109522895912 ~2016
7555081345115110162690312 ~2016
7555265972960442127783312 ~2017
7555407348145332444088712 ~2017
7555461620960443692967312 ~2017
7555770266315111540532712 ~2016
7558225879760465807037712 ~2017
7558437853115116875706312 ~2016
7558632026315117264052712 ~2016
7558648742315117297484712 ~2016
7558896221915117792443912 ~2016
7558971653915117943307912 ~2016
7559282359115118564718312 ~2016
7560107113115120214226312 ~2016
7560832362145364994172712 ~2017
7560862886315121725772712 ~2016
7561001615915122003231912 ~2016
7561242337160489938696912 ~2017
7561483153115122966306312 ~2016
7562205015175622050151112 ~2018
7563090683915126181367912 ~2016
Home
4.679.597 digits
e-mail
25-03-23