Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10497270133120994540266312 ~2017
10497518354320995036708712 ~2017
10498074989920996149979912 ~2017
10498106963920996213927912 ~2017
10498513229920997026459912 ~2017
10499317855120998635710312 ~2017
1049935036212183...75316914 2024
10500312331121000624662312 ~2017
10500513905921001027811912 ~2017
10500985136321001970272712 ~2017
10501215422321002430844712 ~2017
10502242961921004485923912 ~2017
10502484938321004969876712 ~2017
10502838017921005676035912 ~2017
10503067603121006135206312 ~2017
10505135165921010270331912 ~2017
10505463452321010926904712 ~2017
10506225779921012451559912 ~2017
10507141277921014282555912 ~2017
10508553629921017107259912 ~2017
10508922716321017845432712 ~2017
10509794351363058766107912 ~2018
10510010738321020021476712 ~2017
10510049973763060299842312 ~2018
10510326320321020652640712 ~2017
Exponent Prime Factor Dig. Year
10510447157921020894315912 ~2017
10511675185121023350370312 ~2017
10511732099363070392595912 ~2018
10513983925121027967850312 ~2017
1051418831175852...42922315 2023
10514761261763088567570312 ~2018
10515751117121031502234312 ~2017
10516369097921032738195912 ~2017
10516846920163101081520712 ~2018
10517631020321035262040712 ~2017
10518756809921037513619912 ~2017
10519488794321038977588712 ~2017
10519832096321039664192712 ~2017
10519905415121039810830312 ~2017
10520713797763124282786312 ~2018
1052119565339307...49091915 2024
10521538517921043077035912 ~2017
10521904957121043809914312 ~2017
10521932602163131595612712 ~2018
10522998971921045997943912 ~2017
10523343709121046687418312 ~2017
10523657467121047314934312 ~2017
10524218831921048437663912 ~2017
10524423751363146542507912 ~2018
10524736562321049473124712 ~2017
Exponent Prime Factor Dig. Year
10524891338321049782676712 ~2017
10524936572321049873144712 ~2017
10525147231121050294462312 ~2017
10525764319121051528638312 ~2017
10525775203121051550406312 ~2017
10526785901921053571803912 ~2017
10527274015121054548030312 ~2017
10528006775921056013551912 ~2017
1052861487071229...68977715 2023
10528907207921057814415912 ~2017
10529484361121058968722312 ~2017
10530006470321060012940712 ~2017
10530740090321061480180712 ~2017
10530934955921061869911912 ~2017
10531480250321062960500712 ~2017
10532293357121064586714312 ~2017
10532348276321064696552712 ~2017
10532835038321065670076712 ~2017
10533059215121066118430312 ~2017
10533261395921066522791912 ~2017
10533295459121066590918312 ~2017
10533447776321066895552712 ~2017
10534476409763206858458312 ~2018
10534855961921069711923912 ~2017
10535151400163210908400712 ~2018
Exponent Prime Factor Dig. Year
10536618557921073237115912 ~2017
10536674200163220045200712 ~2018
10537884830321075769660712 ~2017
10538167015121076334030312 ~2017
10538343467921076686935912 ~2017
10539149143363234894859912 ~2018
10539407660321078815320712 ~2017
10540550336321081100672712 ~2017
10540836644321081673288712 ~2017
10541897123921083794247912 ~2017
10542538667363255232003912 ~2018
10543436609921086873219912 ~2017
10544186138321088372276712 ~2017
10544284448321088568896712 ~2017
10544803849121089607698312 ~2017
10544982329921089964659912 ~2017
10545219074321090438148712 ~2017
10545754003121091508006312 ~2017
10547589392321095178784712 ~2017
10547789587121095579174312 ~2017
10548213649121096427298312 ~2017
10548895760321097791520712 ~2017
10549016907763294101446312 ~2018
10549156556321098313112712 ~2017
10550123911121100247822312 ~2017
Home
4.679.597 digits
e-mail
25-03-23