Home Free Reseller Hosting Program, Anonymous 24x7 Clients Support, Fast 24x7 Reseller Support e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5182823081910365646163912 ~2015
5182845619110365691238312 ~2015
5183000747941464005983312 ~2016
5183025947910366051895912 ~2015
5183249081910366498163912 ~2015
5183408990310366817980712 ~2015
5183428855731100573134312 ~2016
5183447539741467580317712 ~2016
5183677742310367355484712 ~2015
5184459611910368919223912 ~2015
5184469439910368938879912 ~2015
5184580577910369161155912 ~2015
5184713743110369427486312 ~2015
5185610047951856100479112 ~2016
5185989835110371979670312 ~2015
5187149057910374298115912 ~2015
5187372329910374744659912 ~2015
5187666627731125999766312 ~2016
5187677291910375354583912 ~2015
5187747997110375495994312 ~2015
5187786869910375573739912 ~2015
5187846611910375693223912 ~2015
5188481408310376962816712 ~2015
5188678845151886788451112 ~2016
5189400562131136403372712 ~2016
Exponent Prime Factor Dig. Year
5190084572310380169144712 ~2015
5190278297910380556595912 ~2015
5190350417372664905842312 ~2017
5190354821910380709643912 ~2015
5190869294310381738588712 ~2015
5191090627331146543763912 ~2016
5191140440310382280880712 ~2015
5191825028310383650056712 ~2015
5192032885110384065770312 ~2015
5192540882310385081764712 ~2015
5192664193731155985162312 ~2016
5193031271910386062543912 ~2015
5193070237110386140474312 ~2015
5193394277910386788555912 ~2015
5193513101331161078607912 ~2016
5193681152310387362304712 ~2015
5193922433910387844867912 ~2015
5194089103110388178206312 ~2015
5194370070131166220420712 ~2016
5194651154941557209239312 ~2016
5194742069910389484139912 ~2015
5195034011910390068023912 ~2015
5195379475110390758950312 ~2015
5195382881910390765763912 ~2015
5195723912310391447824712 ~2015
Exponent Prime Factor Dig. Year
5196806850131180841100712 ~2016
5197216040310394432080712 ~2015
5197241912310394483824712 ~2015
5197488373331184930239912 ~2016
5197839638310395679276712 ~2015
5198135293331188811759912 ~2016
5198470481910396940963912 ~2015
5198557531110397115062312 ~2015
5198585792310397171584712 ~2015
5198712991731192277950312 ~2016
5198833590131193001540712 ~2016
5199233341110398466682312 ~2015
5199394255110398788510312 ~2015
519958753011653...34571914 2023
5199782713110399565426312 ~2015
5200031171910400062343912 ~2015
5200148437731200890626312 ~2016
5200196233331201177399912 ~2016
5200368877110400737754312 ~2015
5200499590741603996725712 ~2016
5200600702131203604212712 ~2016
5200655537910401311075912 ~2015
5201871987731211231926312 ~2016
5202902971331217417827912 ~2016
5202957893331217747359912 ~2016
Exponent Prime Factor Dig. Year
5202989972310405979944712 ~2015
5203083040741624664325712 ~2016
5203421119110406842238312 ~2015
5203703364131222220184712 ~2016
5203744136310407488272712 ~2015
5204262571731225575430312 ~2016
5204504665731227027994312 ~2016
5205460897110410921794312 ~2015
5205721051110411442102312 ~2015
5205728413110411456826312 ~2015
5205868213141646945704912 ~2016
5206670099941653360799312 ~2016
5206902469110413804938312 ~2015
5206914973141655319784912 ~2016
5206917301110413834602312 ~2015
5206922387910413844775912 ~2015
5207049437910414098875912 ~2015
5207081803110414163606312 ~2015
5207221817910414443635912 ~2015
5207287099110414574198312 ~2015
5207342948310414685896712 ~2015
5207483006310414966012712 ~2015
5207652205110415304410312 ~2015
5207665813141661326504912 ~2016
520773568091999...01465714 2023
Home
4.768.925 digits
e-mail
25-05-04