Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5159058685730954352114312 ~2016
5159114311110318228622312 ~2015
5159409583110318819166312 ~2015
5159454352130956726112712 ~2016
5159502047910319004095912 ~2015
5159870131330959220787912 ~2016
5160007492130960044952712 ~2016
5160034333110320068666312 ~2015
5160119395110320238790312 ~2015
5160466258130962797548712 ~2016
5160501323372247018526312 ~2017
5160738979110321477958312 ~2015
5161064444310322128888712 ~2015
5161330447330967982683912 ~2016
5161529953110323059906312 ~2015
5161535412130969212472712 ~2016
5161945406310323890812712 ~2015
5162461051141299688408912 ~2016
5162927984310325855968712 ~2015
5163427994310326855988712 ~2015
5163650306310327300612712 ~2015
5163688553910327377107912 ~2015
5163756324751637563247112 ~2016
5163856561330983139367912 ~2016
5163920323330983521939912 ~2016
Exponent Prime Factor Dig. Year
5163993157110327986314312 ~2015
5164403696310328807392712 ~2015
5164410596310328821192712 ~2015
5164810694310329621388712 ~2015
5164938901741319511213712 ~2016
5165964276130995785656712 ~2016
5165987677110331975354312 ~2015
5166357332310332714664712 ~2015
5166523733910333047467912 ~2015
5166791471910333582943912 ~2015
5166846714131001080284712 ~2016
5167222478310334444956712 ~2015
5167320355731003922134312 ~2016
5167463139151674631391112 ~2016
5167471451910334942903912 ~2015
5167614364131005686184712 ~2016
5167791193110335582386312 ~2015
5168041754310336083508712 ~2015
5168330477910336660955912 ~2015
5168856726751688567267112 ~2016
5168872886310337745772712 ~2015
5168937488310337874976712 ~2015
5169390913110338781826312 ~2015
5169517832310339035664712 ~2015
5169524517151695245171112 ~2016
Exponent Prime Factor Dig. Year
5169819098310339638196712 ~2015
5169851186310339702372712 ~2015
5170241798310340483596712 ~2015
5170463531910340927063912 ~2015
5170750202310341500404712 ~2015
5170951880310341903760712 ~2015
5171103207731026619246312 ~2016
5171118055110342236110312 ~2015
5171181191910342362383912 ~2015
5171223925110342447850312 ~2015
5171287052310342574104712 ~2015
5172422537910344845075912 ~2015
5172511712310345023424712 ~2015
5173043461110346086922312 ~2015
5173226549910346453099912 ~2015
5173395313331040371879912 ~2016
5173678057331042068343912 ~2016
5173728749910347457499912 ~2015
5173807826310347615652712 ~2015
5174322956310348645912712 ~2015
5175508247941404065983312 ~2016
5175642836972458999716712 ~2017
5175763741110351527482312 ~2015
517581556216324...16886314 2023
5176052155110352104310312 ~2015
Exponent Prime Factor Dig. Year
517619289431739...12484914 2023
5176305631110352611262312 ~2015
5176313642310352627284712 ~2015
5176380247741411041981712 ~2016
5176531975772471447659912 ~2017
5176763180310353526360712 ~2015
5176897201110353794402312 ~2015
5177016475731062098854312 ~2016
5177181662310354363324712 ~2015
5177275724310354551448712 ~2015
517757760374432...28767314 2023
5177714017110355428034312 ~2015
5177797603731066785622312 ~2016
5178110045331068660271912 ~2016
5179149773910358299547912 ~2015
5179168940310358337880712 ~2015
5179887024131079322144712 ~2016
5180140505910360281011912 ~2015
5180467154310360934308712 ~2015
5180962987110361925974312 ~2015
5180975329110361950658312 ~2015
5181338900310362677800712 ~2015
5182038389910364076779912 ~2015
5182245601110364491202312 ~2015
5182623897731095743386312 ~2016
Home
4.768.925 digits
e-mail
25-05-04