Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5207987072310415974144712 ~2015
5208021218310416042436712 ~2015
5208287927910416575855912 ~2015
5208650809110417301618312 ~2015
5208857012310417714024712 ~2015
5209354801110418709602312 ~2015
5209362535731256175214312 ~2016
5209460212141675681696912 ~2016
5209517839110419035678312 ~2015
5209800851910419601703912 ~2015
5209801126131258806756712 ~2016
520984067992250...73716914 2025
5210042012941680336103312 ~2016
5210130893910420261787912 ~2015
5210164823910420329647912 ~2015
5210188645110420377290312 ~2015
5210866624131265199744712 ~2016
5210907803331265446819912 ~2016
5210973632310421947264712 ~2015
5211232349331267394095912 ~2016
5211244144352112441443112 ~2016
5211496377731268978266312 ~2016
5211987043110423974086312 ~2015
5212109929110424219858312 ~2015
5212647070131275882420712 ~2016
Exponent Prime Factor Dig. Year
5212998769110425997538312 ~2015
521336257873628...54775314 2024
5213790149910427580299912 ~2015
5214074089110428148178312 ~2015
5214338207941714705663312 ~2016
5214443180973002204532712 ~2017
5214692189910429384379912 ~2015
5214735758310429471516712 ~2015
5215060666131290363996712 ~2016
5215090424310430180848712 ~2015
5215275737910430551475912 ~2015
5215470193331292821159912 ~2016
5215546027110431092054312 ~2015
5215558799910431117599912 ~2015
5215884793331295308759912 ~2016
5216362663741730901309712 ~2016
521641694931092...91834315 2023
5216664257910433328515912 ~2015
5216945965141735567720912 ~2016
5217177653910434355307912 ~2015
5217272660310434545320712 ~2015
5217277262941738218103312 ~2016
5217569551141740556408912 ~2016
5217594008310435188016712 ~2015
5218035145110436070290312 ~2015
Exponent Prime Factor Dig. Year
5218405741731310434450312 ~2016
5218505635110437011270312 ~2015
5218648721910437297443912 ~2015
5218789177331312735063912 ~2016
5218901026141751208208912 ~2016
5219020483141752163864912 ~2016
5219126180941753009447312 ~2016
5219206427910438412855912 ~2015
5219657549910439315099912 ~2015
5220138553110440277106312 ~2015
5220162529141761300232912 ~2016
5220382717731322296306312 ~2016
5220400781941763206255312 ~2016
5220533339910441066679912 ~2015
5220543523110441087046312 ~2015
5221270585110442541170312 ~2015
5221708076310443416152712 ~2015
5221813445910443626891912 ~2015
5222009852310444019704712 ~2015
5222100683910444201367912 ~2015
5222724683910445449367912 ~2015
5223574699331341448195912 ~2016
5224098953910448197907912 ~2015
5224240478310448480956712 ~2015
5224704350310449408700712 ~2015
Exponent Prime Factor Dig. Year
5224825861331348955167912 ~2016
5224918153110449836306312 ~2015
5225134267731350805606312 ~2016
5225221661331351329967912 ~2016
5225293508310450587016712 ~2015
5225532296310451064592712 ~2015
5225623580310451247160712 ~2015
5225717236141805737888912 ~2016
5225720641110451441282312 ~2015
5226045699152260456991112 ~2016
5226062113110452124226312 ~2015
5226691871910453383743912 ~2015
5227522895910455045791912 ~2015
5228133020310456266040712 ~2015
5228269745910456539491912 ~2015
5228494898310456989796712 ~2015
5228873291331373239747912 ~2016
5229018017910458036035912 ~2015
5229135980310458271960712 ~2015
5229603899910459207799912 ~2015
5229827105910459654211912 ~2015
5230146538352301465383112 ~2016
5230220924310460441848712 ~2015
5230282099110460564198312 ~2015
5230449161910460898323912 ~2015
Home
4.768.925 digits
e-mail
25-05-04