Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
89111900031782238000711 ~2009
89117089791782341795911 ~2009
89119016991782380339911 ~2009
89123501935347410115911 ~2010
89125306311782506126311 ~2009
89126399175347583950311 ~2010
89128310031782566200711 ~2009
89129640015347778400711 ~2010
89130215631782604312711 ~2009
89131113231782622264711 ~2009
89133445911782668918311 ~2009
89134117575348047054311 ~2010
89139340311782786806311 ~2009
891445615319611803536712 ~2011
89146669677131733573711 ~2010
89148328975348899738311 ~2010
89153649175349218950311 ~2010
89155815111783116302311 ~2009
89155934511783118690311 ~2009
89157693111783153862311 ~2009
89164511631783290232711 ~2009
89170550511783411010311 ~2009
891810211319619824648712 ~2011
89181670615350900236711 ~2010
89181779031783635580711 ~2009
Exponent Prime Factor Dig. Year
89188228311783764566311 ~2009
89196091215351765472711 ~2010
89198246631783964932711 ~2009
89202086391784041727911 ~2009
89203077831784061556711 ~2009
89205544311784110886311 ~2009
89206085631784121712711 ~2009
89208940191784178803911 ~2009
89213023917137041912911 ~2010
89214203511784284070311 ~2009
89218671591784373431911 ~2009
89225384415353523064711 ~2010
89227661697138212935311 ~2010
89227692591784553851911 ~2009
89227828335353669699911 ~2010
892310963312492353486312 ~2011
89241718911784834378311 ~2009
892434278912494079904712 ~2011
89250043311785000866311 ~2009
89254641231785092824711 ~2009
89255568831785111376711 ~2009
89256070015355364200711 ~2010
89256694135355401647911 ~2010
89256847311785136946311 ~2009
89258509911785170198311 ~2009
Exponent Prime Factor Dig. Year
892602903116066852255912 ~2011
89262537111785250742311 ~2009
89262544791785250895911 ~2009
89265552591785311051911 ~2009
89267587791785351755911 ~2009
892675957116068167227912 ~2011
89268907998926890799111 ~2010
892744379312498421310312 ~2011
89277110631785542212711 ~2009
892802959916070453278312 ~2011
89281918797142553503311 ~2010
892863421712500087903912 ~2011
89297560911785951218311 ~2009
89303163831786063276711 ~2009
89305448511786108970311 ~2009
89305849615358350976711 ~2010
89308711431786174228711 ~2009
89311533231786230664711 ~2009
89312494191786249883911 ~2009
89314486497145158919311 ~2010
89315911911786318238311 ~2009
89316389511786327790311 ~2009
89319088791786381775911 ~2009
89320548711786410974311 ~2009
89321137911786422758311 ~2009
Exponent Prime Factor Dig. Year
89321417031786428340711 ~2009
89324642511786492850311 ~2009
89325766038932576603111 ~2010
893322578912506516104712 ~2011
89333911431786678228711 ~2009
89333925415360035524711 ~2010
89343639415360618364711 ~2010
893457094716082227704712 ~2011
89347805391786956107911 ~2009
89349166431786983328711 ~2009
89349953391786999067911 ~2009
893522067714296353083312 ~2011
89353755297148300423311 ~2010
89360278191787205563911 ~2009
89361455511787229110311 ~2009
89364604431787292088711 ~2009
89366601711787332034311 ~2009
89366858991787337179911 ~2009
893669364178642904040912 ~2013
89368868175362132090311 ~2010
89369674191787393483911 ~2009
89371652215362299132711 ~2010
89373169797149853583311 ~2010
89382530991787650619911 ~2009
89384471031787689420711 ~2009
Home
5.307.017 digits
e-mail
26-01-11