Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5230864079910461728159912 ~2015
5230913459910461826919912 ~2015
5231723029110463446058312 ~2015
5231844956310463689912712 ~2015
5232054709110464109418312 ~2015
5232080407110464160814312 ~2015
5232164171910464328343912 ~2015
5232191329110464382658312 ~2015
5232582199141860657592912 ~2016
5232592124310465184248712 ~2015
5232707087910465414175912 ~2015
5232794597910465589195912 ~2015
5232925913373260962786312 ~2017
5233332439110466664878312 ~2015
5233419577741867356621712 ~2016
5233691713110467383426312 ~2015
5233782290310467564580712 ~2015
5234116307910468232615912 ~2015
5234506091910469012183912 ~2015
5234530963110469061926312 ~2015
5234796638310469593276712 ~2015
5234896651110469793302312 ~2015
5235359775731412158654312 ~2016
5235401516310470803032712 ~2015
5235446108310470892216712 ~2015
Exponent Prime Factor Dig. Year
5235521955731413131734312 ~2016
5235779899110471559798312 ~2015
5235877654141887021232912 ~2016
5236531242131419187452712 ~2016
5236637449110473274898312 ~2015
5236822537331420935223912 ~2016
5236914457110473828914312 ~2015
523707934933257...55264714 2023
5237138381910474276763912 ~2015
5237299507110474599014312 ~2015
5237802269910475604539912 ~2015
5237815787910475631575912 ~2015
5237913908941903311271312 ~2016
5237980753110475961506312 ~2015
5238137731773333928243912 ~2017
5238205110131429230660712 ~2016
5238441349110476882698312 ~2015
5238842357910477684715912 ~2015
5238975794310477951588712 ~2015
5239411780131436470680712 ~2016
5239718417910479436835912 ~2015
5239727417910479454835912 ~2015
5239821355110479642710312 ~2015
524006911971917...97810314 2023
5240430586131442583516712 ~2016
Exponent Prime Factor Dig. Year
5240432225910480864451912 ~2015
5240455477110480910954312 ~2015
5240595097773368331367912 ~2017
5240614808941924918471312 ~2016
5240988809910481977619912 ~2015
5241238201331447429207912 ~2016
5241288655110482577310312 ~2015
5241487411110482974822312 ~2015
5242277399910484554799912 ~2015
5242544689110485089378312 ~2015
5242808957910485617915912 ~2015
5242824890310485649780712 ~2015
5243058517110486117034312 ~2015
5243347645110486695290312 ~2015
5243568961731461413770312 ~2016
5243747174310487494348712 ~2015
5244443730752444437307112 ~2016
5244839948310489679896712 ~2015
5244965993910489931987912 ~2015
5245225693110490451386312 ~2015
5245886024310491772048712 ~2015
5246040136141968321088912 ~2016
5246508223110493016446312 ~2015
5246676947910493353895912 ~2015
5246717143331480302859912 ~2016
Exponent Prime Factor Dig. Year
5247127628310494255256712 ~2015
5247263987331483583923912 ~2016
5247353056131484118336712 ~2016
5247497537910494995075912 ~2015
5247622412310495244824712 ~2015
5247693293910495386587912 ~2015
5247760888131486565328712 ~2016
5248126388310496252776712 ~2015
5248707373110497414746312 ~2015
5248911257910497822515912 ~2015
5248919147910497838295912 ~2015
5249770208310499540416712 ~2015
5249897191110499794382312 ~2015
5250245245110500490490312 ~2015
5251503470310503006940712 ~2015
5251572064131509432384712 ~2016
5251581434310503162868712 ~2015
5251825327331510951963912 ~2016
5251998770310503997540712 ~2015
5252340288131514041728712 ~2016
5252579816310505159632712 ~2015
5252636464352526364643112 ~2016
5252744735910505489471912 ~2015
5253812808752538128087112 ~2016
5253912203910507824407912 ~2015
Home
4.768.925 digits
e-mail
25-05-04