Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
101538005392030760107911 ~2009
101538132736092287963911 ~2010
101540556832030811136711 ~2009
101546723992030934479911 ~2009
101547693232030953864711 ~2009
101555624512031112490311 ~2009
1015566226310155662263112 ~2011
101559033712031180674311 ~2009
101560057312031201146311 ~2009
101561538232031230764711 ~2009
101564742776093884566311 ~2010
1015710219116251363505712 ~2011
1015719197356880275048912 ~2013
101573864392031477287911 ~2009
1015757905324378189727312 ~2012
101584291192031685823911 ~2009
101593697632031873952711 ~2009
101594657632031893152711 ~2009
101597207576095832454311 ~2010
101603048936096182935911 ~2010
101608187632032163752711 ~2009
101610900536096654031911 ~2010
101611174192032223483911 ~2009
101616110512032322210311 ~2009
101619374032032387480711 ~2009
Exponent Prime Factor Dig. Year
101623002592032460051911 ~2009
1016260623110162606231112 ~2011
101633095576097985734311 ~2010
101646881392032937627911 ~2009
1016511376924396273045712 ~2012
101656349398132507951311 ~2011
101665267312033305346311 ~2009
101670397198133631775311 ~2011
101670478798133638303311 ~2011
101672349232033446984711 ~2009
101672521678133801733711 ~2011
101672938912033458778311 ~2009
1016758833716268141339312 ~2011
101678892112033577842311 ~2009
101682284032033645680711 ~2009
101683050112033661002311 ~2009
101686184416101171064711 ~2010
101686459792033729195911 ~2009
101686966678134957333711 ~2011
101690445736101426743911 ~2010
101692105376101526322311 ~2010
1016934934310169349343112 ~2011
101703536816102212208711 ~2010
101704135792034082715911 ~2009
101705781016102346860711 ~2010
Exponent Prime Factor Dig. Year
101708039992034160799911 ~2009
101708135392034162707911 ~2009
101708447632034168952711 ~2009
101714322118137145768911 ~2011
1017149005754926046307912 ~2013
101720711578137656925711 ~2011
101731725112034634502311 ~2009
101731741312034634826311 ~2009
101737585312034751706311 ~2009
101737668592034753371911 ~2009
101737882912034757658311 ~2009
101738999032034779980711 ~2009
101739277192034785543911 ~2009
101739816592034796331911 ~2009
1017478913314244704786312 ~2011
101748378592034967571911 ~2009
101750473618140037888911 ~2011
101753162512035063250311 ~2009
101756188192035123763911 ~2009
101756208832035124176711 ~2009
101760817912035216358311 ~2009
101764249432035284988711 ~2009
101766004912035320098311 ~2009
101768206912035364138311 ~2009
101769922912035398458311 ~2009
Exponent Prime Factor Dig. Year
101778230392035564607911 ~2009
101780488792035609775911 ~2009
101786291512035725830311 ~2009
101789700898143176071311 ~2011
1017928762324430290295312 ~2012
1017954482938682270350312 ~2012
101797294936107837695911 ~2010
101805894112036117882311 ~2009
101808442312036168846311 ~2009
101822542976109352578311 ~2010
101827419112036548382311 ~2009
101829801832036596036711 ~2009
101834280416110056824711 ~2010
101837478592036749571911 ~2009
101840492032036809840711 ~2009
101843996632036879932711 ~2009
101846251336110775079911 ~2010
101849496232036989924711 ~2009
101850472978148037837711 ~2011
101852484832037049696711 ~2009
101852903518148232280911 ~2011
101853061792037061235911 ~2009
101853587512037071750311 ~2009
101857861792037157235911 ~2009
1018579323116297269169712 ~2011
Home
5.247.179 digits
e-mail
25-12-14