Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6996579023913993158047912 ~2016
6996593227113993186454312 ~2016
6996672793113993345586312 ~2016
6996911767155975294136912 ~2017
6996929539113993859078312 ~2016
6997427155113994854310312 ~2016
6997492952313994985904712 ~2016
6997520156313995040312712 ~2016
6997832627913995665255912 ~2016
6998030263113996060526312 ~2016
6999318404313998636808712 ~2016
6999367349913998734699912 ~2016
7000427750314000855500712 ~2016
7000475486314000950972712 ~2016
7000920727756007365821712 ~2017
700098973612394...89746314 2024
7001201105914002402211912 ~2016
7001667990770016679907112 ~2017
7002043520314004087040712 ~2016
7002144499114004288998312 ~2016
7002771571114005543142312 ~2016
7003027649914006055299912 ~2016
7003097642956024781143312 ~2017
7003324694956026597559312 ~2017
7003551494314007102988712 ~2016
Exponent Prime Factor Dig. Year
7004818925914009637851912 ~2016
7004984150314009968300712 ~2016
7005139268314010278536712 ~2016
7005260708314010521416712 ~2016
7005358753114010717506312 ~2016
7005571715914011143431912 ~2016
7006014311914012028623912 ~2016
7006347271114012694542312 ~2016
7006392059914012784119912 ~2016
7006868365114013736730312 ~2016
7007170951114014341902312 ~2016
7007805623914015611247912 ~2016
7008276992314016553984712 ~2016
7009317656314018635312712 ~2016
7009620043756076960349712 ~2017
7009680339742058082038312 ~2017
7010341355914020682711912 ~2016
7010405310142062431860712 ~2017
7010891677114021783354312 ~2016
7010900933914021801867912 ~2016
7010950570142065703420712 ~2017
7011624734314023249468712 ~2016
701166464172131...51076914 2023
7011808658314023617316712 ~2016
7012076753914024153507912 ~2016
Exponent Prime Factor Dig. Year
7012486421914024972843912 ~2016
7012824181114025648362312 ~2016
7012972535914025945071912 ~2016
701385501233380...15928714 2024
7013938781914027877563912 ~2016
701400784332637...49080914 2024
701410174033100...69212714 2023
7014380080142086280480712 ~2017
7015084603342090507619912 ~2017
7015806674314031613348712 ~2016
7016180911114032361822312 ~2016
7016497817914032995635912 ~2016
7017017657914034035315912 ~2016
7017325696156138605568912 ~2017
7017353102314034706204712 ~2016
7017788234314035576468712 ~2016
7018318526314036637052712 ~2016
7018465578770184655787112 ~2017
7018730615914037461231912 ~2016
7019740052314039480104712 ~2016
7019859143914039718287912 ~2016
7019992220314039984440712 ~2016
7020525146956164201175312 ~2017
7020647209742123883258312 ~2017
7020721025914041442051912 ~2016
Exponent Prime Factor Dig. Year
7021121395114042242790312 ~2016
7021654754314043309508712 ~2016
7022210701742133264210312 ~2017
7022662897114045325794312 ~2016
7023124283914046248567912 ~2016
7023221327956185770623312 ~2017
7024460426314048920852712 ~2016
7024492741114048985482312 ~2016
7024769947114049539894312 ~2016
7024855914142149135484712 ~2017
7024872002314049744004712 ~2016
702496058572528...10852114 2024
702503345273778...08620715 2025
7025207525914050415051912 ~2016
7025430770956203446167312 ~2017
7025658845914051317691912 ~2016
7026425152756211401221712 ~2017
7026928382314053856764712 ~2016
7027029479914054058959912 ~2016
7027212319114054424638312 ~2016
7027361005114054722010312 ~2016
7027380463114054760926312 ~2016
7027792691914055585383912 ~2016
7028254675156226037400912 ~2017
7029176864314058353728712 ~2016
Home
4.679.597 digits
e-mail
25-03-23