Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
489052779772376...09682314 2023
4890613913368468594786312 ~2017
489068492639781369852711 ~2014
489078060119781561202311 ~2014
4890829932748908299327112 ~2016
4891350000178261600001712 ~2017
489139064399782781287911 ~2014
4891725583329350353499912 ~2016
489219988439784399768711 ~2014
4892233753139137870024912 ~2016
489239001119784780022311 ~2014
489246869399784937387911 ~2014
4892613807729355682846312 ~2016
489290996039785819920711 ~2014
489292355399785847107911 ~2014
489297225119785944502311 ~2014
489329958839786599176711 ~2014
489342638639786852772711 ~2014
4893562075729361372454312 ~2016
489368408999787368179911 ~2014
4893739962778299839403312 ~2017
489396456599787929131911 ~2014
489454281239789085624711 ~2014
489463247999789264959911 ~2014
4895167591768532346283912 ~2017
Exponent Prime Factor Dig. Year
489532812719790656254311 ~2014
489541041599790820831911 ~2014
4895770997939166167983312 ~2016
4895920422748959204227112 ~2016
4896130147948961301479112 ~2016
4896167985729377007914312 ~2016
489633117599792662351911 ~2014
4896667519329380005115912 ~2016
489680131199793602623911 ~2014
489711322919794226458311 ~2014
4897372193329384233159912 ~2016
489746231639794924632711 ~2014
4897493265148974932651112 ~2016
489789749639795794992711 ~2014
489809947919796198958311 ~2014
4898280919329389685515912 ~2016
489915477719798309554311 ~2014
489921262799798425255911 ~2014
489936147599798722951911 ~2014
4899618324129397709944712 ~2016
489964588319799291766311 ~2014
4900309955939202479647312 ~2016
490036670999800733419911 ~2014
490059269399801185387911 ~2014
490101586799802031735911 ~2014
Exponent Prime Factor Dig. Year
490123001639802460032711 ~2014
490133223119802664462311 ~2014
490163782199803275643911 ~2014
490171292639803425852711 ~2014
490208560919804171218311 ~2015
490209634439804192688711 ~2015
490220248199804404963911 ~2015
490243435919804868718311 ~2015
490257103799805142075911 ~2015
4902706698749027066987112 ~2016
490272143999805442879911 ~2015
4902832952968639661340712 ~2017
490321020719806420414311 ~2015
490325460719806509214311 ~2015
4903490932349034909323112 ~2016
490357466639807149332711 ~2015
490500116039810002320711 ~2015
4905076264739240610117712 ~2016
490511043839810220876711 ~2015
490532200919810644018311 ~2015
4905371362739242970901712 ~2016
490545353999810907079911 ~2015
4905659753368679236546312 ~2017
4905733377729434400266312 ~2016
4905758145178492130321712 ~2017
Exponent Prime Factor Dig. Year
490578826199811576523911 ~2015
4906290111729437740670312 ~2016
4906424624939251396999312 ~2016
490652335439813046708711 ~2015
4906800085329440800511912 ~2016
490731402119814628042311 ~2015
490740165599814803311911 ~2015
490743082439814861648711 ~2015
490748118112179...06446315 2023
490763189399815263787911 ~2015
490800088919816001778311 ~2015
4908410802749084108027112 ~2016
490897739519817954790311 ~2015
490910398192474...06877714 2025
490922241839818444836711 ~2015
4909426021768731964303912 ~2017
4909797853378556765652912 ~2017
490989507599819790151911 ~2015
490993745039819874900711 ~2015
491019344999820386899911 ~2015
4910309289729461855738312 ~2016
491044776599820895531911 ~2015
491051788199821035763911 ~2015
4910624179139284993432912 ~2016
4910947480129465684880712 ~2016
Home
4.768.925 digits
e-mail
25-05-04