Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
97892392791957847855911 ~2009
97895573397831645871311 ~2011
97900414191958008283911 ~2009
97901379711958027594311 ~2009
97902958917832236712911 ~2011
97903804191958076083911 ~2009
97906617615874397056711 ~2010
97909981311958199626311 ~2009
97911204831958224096711 ~2009
97930004031958600080711 ~2009
979301209329379036279112 ~2012
97930179591958603591911 ~2009
97931852877834548229711 ~2011
97934188519793418851111 ~2011
97935544735876132683911 ~2010
97935655431958713108711 ~2009
97940068791958801375911 ~2009
979406095713711685339912 ~2011
979411247313711757462312 ~2011
97943376015876602560711 ~2010
97946823775876809426311 ~2010
97947098031958941960711 ~2009
97948949511958978990311 ~2009
97951797591959035951911 ~2009
97951963815877117828711 ~2010
Exponent Prime Factor Dig. Year
97953363711959067274311 ~2009
97957707231959154144711 ~2009
97959678735877580723911 ~2010
97961084631959221692711 ~2009
97961516991959230339911 ~2009
979626169713714766375912 ~2011
97964787591959295751911 ~2009
97966222575877973354311 ~2010
97966541511959330830311 ~2009
97969692231959393844711 ~2009
97982585391959651707911 ~2009
97985066031959701320711 ~2009
97988311311959766226311 ~2009
979884643941155155043912 ~2012
97990370511959807410311 ~2009
97993245111959864902311 ~2009
979956106923518946565712 ~2012
97998809031959976180711 ~2009
98000141535880008491911 ~2010
98001350991960027019911 ~2009
98004746991960094939911 ~2009
98006569911960131398311 ~2009
98006612391960132247911 ~2009
98011893297840951463311 ~2011
98014012311960280246311 ~2009
Exponent Prime Factor Dig. Year
98015296311960305926311 ~2009
98023810791960476215911 ~2009
98024337831960486756711 ~2009
98024628231960492564711 ~2009
98026186497842094919311 ~2011
98030987511960619750311 ~2009
98035564911960711298311 ~2009
98040051711960801034311 ~2009
98040251511960805030311 ~2009
98041968231960839364711 ~2009
980421705739216868228112 ~2012
980509333917649168010312 ~2011
98053965711961079314311 ~2009
98055722991961114459911 ~2009
98058841911961176838311 ~2009
98064030591961280611911 ~2009
98068263111961365262311 ~2009
98069796319806979631111 ~2011
98070643917845651512911 ~2011
98070739311961414786311 ~2009
98071588431961431768711 ~2009
98075296015884517760711 ~2010
98075819991961516399911 ~2009
98079112797846329023311 ~2011
980810748115692971969712 ~2011
Exponent Prime Factor Dig. Year
98082647775884958866311 ~2010
98085276231961705524711 ~2009
98086488231961729764711 ~2009
98097417831961948356711 ~2009
98101102311962022046311 ~2009
98103888535886233311911 ~2010
98109406191962188123911 ~2009
98116069911962321398311 ~2009
98123041431962460828711 ~2009
981242023723549808568912 ~2012
98125499631962509992711 ~2009
98133413991962668279911 ~2009
98138531031962770620711 ~2009
98142067911962841358311 ~2009
98142466191962849323911 ~2009
98142661399814266139111 ~2011
98143007391962860147911 ~2009
98143699311962873986311 ~2009
98144006215888640372711 ~2010
98149533591962990671911 ~2009
98154814191963096283911 ~2009
98157559911963151198311 ~2009
98158378191963167563911 ~2009
981604747321595304440712 ~2012
98160680775889640846311 ~2010
Home
5.247.179 digits
e-mail
25-12-14