Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5322535891110645071782312 ~2015
5322615506310645231012712 ~2015
5323064719110646129438312 ~2015
5323080878310646161756712 ~2015
5323233214131939399284712 ~2016
5323476839910646953679912 ~2015
5323785601774532998423912 ~2017
5324055673110648111346312 ~2015
5324314938131945889628712 ~2016
5324891682753248916827112 ~2016
5324951819331949710915912 ~2016
5325460729953254607299112 ~2016
5325672136742605377093712 ~2016
5325863060974562082852712 ~2017
5325919495110651838990312 ~2015
5326163227110652326454312 ~2015
5326183145910652366291912 ~2015
5326584671910653169343912 ~2015
5327022782310654045564712 ~2015
5327190506942617524055312 ~2016
5327334823110654669646312 ~2015
5327380435731964282614312 ~2016
5327931689910655863379912 ~2015
5327955163110655910326312 ~2015
5327958164310655916328712 ~2015
Exponent Prime Factor Dig. Year
5327986168131967917008712 ~2016
5328944671331973668027912 ~2016
5329091963910658183927912 ~2015
5329134312131974805872712 ~2016
5329138879110658277758312 ~2015
5329189994310658379988712 ~2015
5329266296310658532592712 ~2015
5329473911910658947823912 ~2015
5329782479910659564959912 ~2015
5329849375110659698750312 ~2015
5330596475910661192951912 ~2015
5330912955153309129551112 ~2017
5330925671910661851343912 ~2015
5331057187110662114374312 ~2015
5331241861742649934893712 ~2016
5331346784310662693568712 ~2015
5331513122310663026244712 ~2015
5331626654310663253308712 ~2015
5331996098942655968791312 ~2016
5332901413110665802826312 ~2015
5333127098310666254196712 ~2015
5333155099110666310198312 ~2015
5333265488310666530976712 ~2015
5333513663910667027327912 ~2015
5333745473910667490947912 ~2015
Exponent Prime Factor Dig. Year
5333952355110667904710312 ~2015
5334060977910668121955912 ~2015
5334182095110668364190312 ~2015
5334467125110668934250312 ~2015
5334517631942676141055312 ~2016
5334737749110669475498312 ~2015
5334923771910669847543912 ~2015
5335108069110670216138312 ~2015
5335121077110670242154312 ~2015
5335301587110670603174312 ~2015
5335587131910671174263912 ~2015
5335764775110671529550312 ~2015
5335866707910671733415912 ~2015
5335941854310671883708712 ~2015
5336009129910672018259912 ~2015
5336283995332017703971912 ~2016
5336715764310673431528712 ~2015
5337086063910674172127912 ~2015
5337651253110675302506312 ~2015
5338065791910676131583912 ~2015
5338250377332029502263912 ~2016
5338488553110676977106312 ~2015
5338562450310677124900712 ~2015
5338725569910677451139912 ~2015
5338868033942710944271312 ~2016
Exponent Prime Factor Dig. Year
5338940998742711527989712 ~2016
5339286263910678572527912 ~2015
5339363803732036182822312 ~2016
5339396201910678792403912 ~2015
5340495991110680991982312 ~2015
5340519788310681039576712 ~2015
5341061185110682122370312 ~2015
5341237123110682474246312 ~2015
5341398169332048389015912 ~2016
5341403647110682807294312 ~2015
5341612904310683225808712 ~2015
5341648826310683297652712 ~2015
5341840158132051040948712 ~2016
5342007033732052042202312 ~2016
5342625391332055752347912 ~2016
5342887898310685775796712 ~2015
5343868963110687737926312 ~2015
5344266044942754128359312 ~2016
5344601933910689203867912 ~2015
5345148655110690297310312 ~2015
5346098177910692196355912 ~2015
5346342847774848799867912 ~2017
5346678244142773425952912 ~2016
5346700105110693400210312 ~2015
5347271828310694543656712 ~2015
Home
4.768.925 digits
e-mail
25-05-04