Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7029922196314059844392712 ~2016
7030078841914060157683912 ~2016
7030714505914061429011912 ~2016
7030985591914061971183912 ~2016
7031555635742189333814312 ~2017
7032487772314064975544712 ~2016
7033220909914066441819912 ~2016
7033457459914066914919912 ~2016
7033851187114067702374312 ~2016
7033876459756271011677712 ~2017
7034139118756273112949712 ~2017
7034314207114068628414312 ~2016
7034499524314068999048712 ~2016
7034974031914069948063912 ~2016
7035870809914071741619912 ~2016
7036223605114072447210312 ~2016
7036525087756292200701712 ~2017
7036804721914073609443912 ~2016
7037143889914074287779912 ~2016
7037156453342222938719912 ~2017
7037577203914075154407912 ~2016
7038105346142228632076712 ~2017
7038115279114076230558312 ~2016
7038307859914076615719912 ~2016
7038459168142230755008712 ~2017
Exponent Prime Factor Dig. Year
7038548761114077097522312 ~2016
7038585811156308686488912 ~2017
7038883831342233302987912 ~2017
7041064121956328512975312 ~2017
7041579691114083159382312 ~2016
7041858986314083717972712 ~2016
7041921925742251531554312 ~2017
7042487717914084975435912 ~2016
7043145982142258875892712 ~2017
7043147329114086294658312 ~2016
7043313700370433137003112 ~2017
7043898471742263390830312 ~2017
7044739303114089478606312 ~2016
7045150667914090301335912 ~2016
7045163699914090327399912 ~2016
704527661591651...87669715 2023
7045866838370458668383112 ~2017
7046008871914092017743912 ~2016
7046128711156369029688912 ~2017
7046168269114092336538312 ~2016
7046233321742277399930312 ~2017
7046394539914092789079912 ~2016
7046989680142281938080712 ~2017
7047294305914094588611912 ~2016
7047850505914095701011912 ~2016
Exponent Prime Factor Dig. Year
7047889512142287337072712 ~2017
7047893577742287361466312 ~2017
7047919313914095838627912 ~2016
7048021903114096043806312 ~2016
7048141535914096283071912 ~2016
7048144694314096289388712 ~2016
7048234112314096468224712 ~2016
7048311371914096622743912 ~2016
7048447881742290687290312 ~2017
7048502040142291012240712 ~2017
7048715768314097431536712 ~2016
7048908419914097816839912 ~2016
7049021402314098042804712 ~2016
7049186369914098372739912 ~2016
7049618241170496182411112 ~2017
7049647613914099295227912 ~2016
7049719931914099439863912 ~2016
7049734273114099468546312 ~2016
7051129496314102258992712 ~2016
7052498731114104997462312 ~2016
7052532736142315196416712 ~2017
7053053161114106106322312 ~2016
7053216967114106433934312 ~2016
7053233136770532331367112 ~2017
7054180617742325083706312 ~2017
Exponent Prime Factor Dig. Year
7054658848756437270789712 ~2017
7054935265114109870530312 ~2016
7055476172314110952344712 ~2016
7055872898314111745796712 ~2016
7056176737114112353474312 ~2016
7056422335114112844670312 ~2016
7056702347914113404695912 ~2016
7056907277914113814555912 ~2016
7056919230770569192307112 ~2017
7057361630314114723260712 ~2016
7057448183914114896367912 ~2016
7058309204314116618408712 ~2016
7058379962314116759924712 ~2016
705852946072724...71830314 2024
7058938733914117877467912 ~2016
7059197415742355184494312 ~2017
7059221786314118443572712 ~2016
7059439967914118879935912 ~2016
7059444317342356665903912 ~2017
7059496760314118993520712 ~2016
7059830497156478643976912 ~2017
7059861661114119723322312 ~2016
7060085683114120171366312 ~2016
7060473670142362842020712 ~2017
7060583848756484670789712 ~2017
Home
4.679.597 digits
e-mail
25-03-23