Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
469379047199387580943911 ~2014
4694408926128166453556712 ~2016
469441867919388837358311 ~2014
469459089839389181796711 ~2014
469489337999389786759911 ~2014
469516010039390320200711 ~2014
469518592319390371846311 ~2014
4695207115765732899619912 ~2016
469588597919391771958311 ~2014
469602563639392051272711 ~2014
4696318012346963180123112 ~2016
469646060999392921219911 ~2014
4696592302128179553812712 ~2016
469683168839393663376711 ~2014
469713403199394268063911 ~2014
469714200599394284011911 ~2014
4697185235328183111411912 ~2016
4697197824746971978247112 ~2016
469726803012470...83832714 2023
469756559399395131187911 ~2014
4697607433328185644599912 ~2016
469760865119395217302311 ~2014
469799704919395994098311 ~2014
469804722239396094444711 ~2014
469825261799396505235911 ~2014
Exponent Prime Factor Dig. Year
469825871039396517420711 ~2014
4698383265728190299594312 ~2016
4698657198128191943188712 ~2016
469910322719398206454311 ~2014
469924218239398484364711 ~2014
469961907239399238144711 ~2014
469963096319399261926311 ~2014
4699675644128198053864712 ~2016
470019373199400387463911 ~2014
470034965639400699312711 ~2014
470051295119401025902311 ~2014
470068729319401374586311 ~2014
470098869719401977394311 ~2014
470104811519402096230311 ~2014
4701171485328207028911912 ~2016
4701210355328207262131912 ~2016
4701213756175219420097712 ~2017
470140598999402811979911 ~2014
470144523719402890474311 ~2014
470156875319403137506311 ~2014
470181540839403630816711 ~2014
470182194599403643891911 ~2014
470184670919403693418311 ~2014
470214506399404290127911 ~2014
4702598867365836384142312 ~2016
Exponent Prime Factor Dig. Year
4702833669728217002018312 ~2016
470314639439406292788711 ~2014
470321366999406427339911 ~2014
470363924519407278490311 ~2014
470371753199407435063911 ~2014
470378003399407560067911 ~2014
470389253632935...42651314 2024
470409955919408199118311 ~2014
4704174858175266797729712 ~2017
4704196603947041966039112 ~2016
470457191639409143832711 ~2014
470462122439409242448711 ~2014
470527268639410545372711 ~2014
470528651999410573039911 ~2014
4705477921728232867530312 ~2016
4705528323728233169942312 ~2016
470553056399411061127911 ~2014
470578403639411568072711 ~2014
4706432013775302912219312 ~2017
470665190999413303819911 ~2014
470679142919413582858311 ~2014
4706895918128241375508712 ~2016
470782760519415655210311 ~2014
470790253199415805063911 ~2014
4708054608747080546087112 ~2016
Exponent Prime Factor Dig. Year
470811924239416238484711 ~2014
4708229280128249375680712 ~2016
470841715319416834306311 ~2014
470857026599417140531911 ~2014
4708643904747086439047112 ~2016
470874639119417492782311 ~2014
470901569999418031399911 ~2014
470920093199418401863911 ~2014
4709267347328255604083912 ~2016
470953484039419069680711 ~2014
4709547610737676380885712 ~2016
4709655455328257932731912 ~2016
470976914999419538299911 ~2014
470978846992373...88829714 2024
471012812039420256240711 ~2014
471017205599420344111911 ~2014
471069849239421396984711 ~2014
471081735599421634711911 ~2014
471119087519422381750311 ~2014
471143235614513...97143914 2024
471158251439423165028711 ~2014
471163780199423275603911 ~2014
471214237319424284746311 ~2014
4712431459728274588758312 ~2016
471266168639425323372711 ~2014
Home
4.768.925 digits
e-mail
25-05-04