Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
3519276743928154213951312 ~2015
351928607397038572147911 ~2013
351928674717038573494311 ~2013
351938057997038761159911 ~2013
351944732637038894652711 ~2013
351966687117039333742311 ~2013
3519800329749277204615912 ~2015
3520346224728162769797712 ~2015
3520528567321123171403912 ~2015
352076337117041526742311 ~2013
352088739237041774784711 ~2013
352109114517042182290311 ~2013
3521111303321126667819912 ~2015
3521118672177464610786312 ~2016
352151465037043029300711 ~2013
352161251637043225032711 ~2013
3521714827721130288966312 ~2015
3522100366356353605860912 ~2016
352237293117044745862311 ~2013
352316683197046333663911 ~2013
3523524031128188192248912 ~2015
352361161197047223223911 ~2013
352369850997047397019911 ~2013
3523858206121143149236712 ~2015
3523870313321143221879912 ~2015
Exponent Prime Factor Dig. Year
352392322437047846448711 ~2013
352393518117047870362311 ~2013
352394364837047887296711 ~2013
352396489197047929783911 ~2013
352398772197047975443911 ~2013
352415963037048319260711 ~2013
3524206650735242066507112 ~2015
352459319397049186387911 ~2013
352467266997049345339911 ~2013
352490090517049801810311 ~2013
3525016133321150096799912 ~2015
352507010397050140207911 ~2013
352507244037050144880711 ~2013
352508969037050179380711 ~2013
352518178797050363575911 ~2013
352520285517050405710311 ~2013
352531253997050625079911 ~2013
352539855237050797104711 ~2013
3525589254156409428065712 ~2016
352566963117051339262311 ~2013
3525915013128207320104912 ~2015
352605262437052105248711 ~2013
352605909237052118184711 ~2013
352608592197052171843911 ~2013
3526461190128211689520912 ~2015
Exponent Prime Factor Dig. Year
3526638073321159828439912 ~2015
352665973917053319478311 ~2013
352678357197053567143911 ~2013
352701749037054034980711 ~2013
3527089633721162537802312 ~2015
352735076517054701530311 ~2013
352756074597055121491911 ~2013
352758864237055177284711 ~2013
352767408717055348174311 ~2013
352768750317055375006311 ~2013
352788840717055776814311 ~2013
352789678797055793575911 ~2013
352796315037055926300711 ~2013
352809846597056196931911 ~2013
3528145577928225164623312 ~2015
3528331992177623303826312 ~2016
352846560837056931216711 ~2013
352848519237056970384711 ~2013
3528534469321171206815912 ~2015
3528640271928229122175312 ~2015
3528819112128230552896912 ~2015
3528831547728230652381712 ~2015
352883503797057670075911 ~2013
352889387037057787740711 ~2013
352896969132682...65388114 2024
Exponent Prime Factor Dig. Year
3529233087721175398526312 ~2015
352925793237058515864711 ~2013
352940568237058811364711 ~2013
352954999797059099995911 ~2013
352968020637059360412711 ~2013
352983673197059673463911 ~2013
3529942987721179657926312 ~2015
3529973263935299732639112 ~2015
353008387317060167746311 ~2013
3530197947721181187686312 ~2015
353028519597060570391911 ~2013
353050641837061012836711 ~2013
353077765339236...41032914 2023
353103342597062066851911 ~2013
353112225597062244511911 ~2013
353112301917062246038311 ~2013
3531386615321188319691912 ~2015
3531432631721188595790312 ~2015
3531601976928252815815312 ~2015
353160872637063217452711 ~2013
353181142317063622846311 ~2013
3531887311128255098488912 ~2015
353211940437064238808711 ~2013
353212047717064240954311 ~2013
353230821837064616436711 ~2013
Home
4.768.925 digits
e-mail
25-05-04