Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
116350280392327005607911 ~2010
116358337016981500220711 ~2011
116375255512327505110311 ~2010
116378513992327570279911 ~2010
116380546432327610928711 ~2010
116383876792327677535911 ~2010
116383887016983033220711 ~2011
1163889478165177810773712 ~2013
116389934032327798680711 ~2010
116392171199311373695311 ~2011
116393854192327877083911 ~2010
116394527392327890547911 ~2010
116403098992328061979911 ~2010
116411733712328234674311 ~2010
116420069512328401390311 ~2010
116421910792328438215911 ~2010
116425553992328511079911 ~2010
116426866732458...25337714 2025
116435859832328717196711 ~2010
116439647416986378844711 ~2011
116446852312328937046311 ~2010
116453301712329066034311 ~2010
1164558676318632938820912 ~2012
1164567864125620493010312 ~2012
116456890312329137806311 ~2010
Exponent Prime Factor Dig. Year
116471184592329423691911 ~2010
116474647432329492948711 ~2010
116476563119318125048911 ~2011
116477766112329555322311 ~2010
116478001792329560035911 ~2010
116501023912330020478311 ~2010
1165020909111650209091112 ~2011
1165040759955921956475312 ~2013
1165069663927961671933712 ~2012
116513492392330269847911 ~2010
116523033592330460671911 ~2010
116525942512330518850311 ~2010
116527052219322164176911 ~2011
116537355299322988423311 ~2011
116555657392331113147911 ~2010
116557093576993425614311 ~2011
116559509632331190192711 ~2010
116568090232331361804711 ~2010
116573323432331466468711 ~2010
116580118312331602366311 ~2010
116580620992331612419911 ~2010
116582834638582...85460714 2023
116582987632331659752711 ~2010
116583565792331671315911 ~2010
116584063019326725040911 ~2011
Exponent Prime Factor Dig. Year
116586811192331736223911 ~2010
116588714632331774292711 ~2010
116589417136995365027911 ~2011
116592430912331848618311 ~2010
116592523312331850466311 ~2010
116598851032331977020711 ~2010
116606144992332122899911 ~2010
116607211792332144235911 ~2010
116611558616996693516711 ~2011
116612377816996742668711 ~2011
1166205076727988921840912 ~2012
1166252712711662527127112 ~2011
116631331136997879867911 ~2011
116635434832332708696711 ~2010
116636212432332724248711 ~2010
116637138299330971063311 ~2011
1166566523316331931326312 ~2012
1166600400125665208802312 ~2012
116662856819333028544911 ~2011
116663728432333274568711 ~2010
116665305232333306104711 ~2010
116669247712333384954311 ~2010
116671888312333437766311 ~2010
116690311192333806223911 ~2010
116692415819335393264911 ~2011
Exponent Prime Factor Dig. Year
116694373192333887463911 ~2010
116695120912333902418311 ~2010
116697105232333942104711 ~2010
116703385792334067715911 ~2010
1167098613728010366728912 ~2012
116715083992334301679911 ~2010
116724521177003471270311 ~2011
116726539912334530798311 ~2010
116741633392334832667911 ~2010
116747100832334942016711 ~2010
116749980592334999611911 ~2010
116751024592335020491911 ~2010
116754474112335089482311 ~2010
116761653592335233071911 ~2010
116762278817005736728711 ~2011
116770792792335415855911 ~2010
116771914792335438295911 ~2010
116773090319341847224911 ~2011
116775612112335512242311 ~2010
116780591992335611839911 ~2010
116783844112335676882311 ~2010
116790499817007429988711 ~2011
1167914281911679142819112 ~2011
1167921055921022579006312 ~2012
116792467312335849346311 ~2010
Home
5.247.179 digits
e-mail
25-12-14