Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5543594684311087189368712 ~2015
5544172288744353378309712 ~2016
5545058173111090116346312 ~2015
5545196725111090393450312 ~2015
5545295024311090590048712 ~2015
5545410893911090821787912 ~2015
5546132491111092264982312 ~2015
5546470789111092941578312 ~2015
5547176300311094352600712 ~2015
5547278983144378231864912 ~2016
5547279625111094559250312 ~2015
5547557238755475572387112 ~2017
5547575503111095151006312 ~2015
5547839465911095678931912 ~2015
5548279334311096558668712 ~2015
5548991875111097983750312 ~2015
5549355869333296135215912 ~2016
5549368489111098736978312 ~2015
5549419469911098838939912 ~2015
5549503250311099006500712 ~2015
5549878976311099757952712 ~2015
5550256697911100513395912 ~2015
5550446905777706256679912 ~2017
5550647840311101295680712 ~2015
5550863653111101727306312 ~2015
Exponent Prime Factor Dig. Year
5551008919111102017838312 ~2015
5551043163733306258982312 ~2016
5551331276311102662552712 ~2015
5551484152355514841523112 ~2017
5551931465911103862931912 ~2015
5552390333911104780667912 ~2015
5552542479733315254878312 ~2016
5552562835111105125670312 ~2015
5552662451911105324903912 ~2015
5552753180311105506360712 ~2015
5553319901911106639803912 ~2015
5553512227111107024454312 ~2015
5553629465911107258931912 ~2015
5554479469111108958938312 ~2015
5554851494311109702988712 ~2015
5555221621111110443242312 ~2015
5555222381911110444763912 ~2015
5555391953911110783907912 ~2015
5555492646133332955876712 ~2016
5555663564311111327128712 ~2015
5556463115911112926231912 ~2015
5556836179144454689432912 ~2016
5556970961911113941923912 ~2015
5557158860311114317720712 ~2015
5557504001911115008003912 ~2015
Exponent Prime Factor Dig. Year
5557721051911115442103912 ~2015
5558165327911116330655912 ~2015
5558349499733350096998312 ~2016
5558362687744466901501712 ~2016
5558392835911116785671912 ~2015
5558660144311117320288712 ~2015
5558977199911117954399912 ~2015
5559008905733354053434312 ~2016
5559099391733354596350312 ~2016
5559424832311118849664712 ~2015
5559697409911119394819912 ~2015
5559759812311119519624712 ~2015
5559772121911119544243912 ~2015
5559885640355598856403112 ~2017
5560000632755600006327112 ~2017
5560051475911120102951912 ~2015
5560379723911120759447912 ~2015
5560419218311120838436712 ~2015
5560442471911120884943912 ~2015
5560676428744485411429712 ~2016
5561518112311123036224712 ~2015
5561550343111123100686312 ~2015
5562033355111124066710312 ~2015
5562561095911125122191912 ~2015
5562601424311125202848712 ~2015
Exponent Prime Factor Dig. Year
5562616193333375697159912 ~2016
5563398446311126796892712 ~2015
5563455709111126911418312 ~2015
5563462262311126924524712 ~2015
5563546538311127093076712 ~2015
5563550495911127100991912 ~2015
5563571819911127143639912 ~2015
5563621637911127243275912 ~2015
5564437549111128875098312 ~2015
5564596045111129192090312 ~2015
5564633425777904867959912 ~2017
5564759743111129519486312 ~2015
5565050618311130101236712 ~2015
5565411649111130823298312 ~2015
5565441086311130882172712 ~2015
5565905953111131811906312 ~2015
5566261058311132522116712 ~2015
5566496423333398978539912 ~2016
5566885658311133771316712 ~2015
5567779489111135558978312 ~2015
5568106789111136213578312 ~2015
5568636188311137272376712 ~2015
5568686294311137372588712 ~2015
5568796202311137592404712 ~2015
5568895238311137790476712 ~2015
Home
4.724.182 digits
e-mail
25-04-13