Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5086006195110172012390312 ~2015
5087170805910174341611912 ~2015
5087656871910175313743912 ~2015
5087712979110175425958312 ~2015
5088344351910176688703912 ~2015
5088368557110176737114312 ~2015
5088389431110176778862312 ~2015
5088680966310177361932712 ~2015
5088884207910177768415912 ~2015
5088890041110177780082312 ~2015
5089862533110179725066312 ~2015
5090573587110181147174312 ~2015
5091053068740728424549712 ~2016
5091216523110182433046312 ~2015
5091333262130547999572712 ~2016
5091343087330548058523912 ~2016
5091476588310182953176712 ~2015
5091677075910183354151912 ~2015
5091733717140733869736912 ~2016
5091750303730550501822312 ~2016
5091828838130550973028712 ~2016
5091944546940735556375312 ~2016
5092756406310185512812712 ~2015
5093617370310187234740712 ~2015
5094121849110188243698312 ~2015
Exponent Prime Factor Dig. Year
5094136591110188273182312 ~2015
5094444667110188889334312 ~2015
5094492278310188984556712 ~2015
5094689275110189378550312 ~2015
5094813742130568882452712 ~2016
5095584939730573509638312 ~2016
5095682327910191364655912 ~2015
5095944933730575669602312 ~2016
5095990777740767926221712 ~2016
509644175871349...77037715 2025
5097038329110194076658312 ~2015
5097220826310194441652712 ~2015
5097226957110194453914312 ~2015
5097335021330584010127912 ~2016
5097881459910195762919912 ~2015
509794655573456...64764714 2023
5098151318310196302636712 ~2015
5098993891110197987782312 ~2015
5099394965910198789931912 ~2015
5099810339910199620679912 ~2015
5099816948310199633896712 ~2015
5099873477910199746955912 ~2015
5100519545910201039091912 ~2015
5100625753110201251506312 ~2015
5100978205110201956410312 ~2015
Exponent Prime Factor Dig. Year
5101031567910202063135912 ~2015
5101181300310202362600712 ~2015
5101312952310202625904712 ~2015
5101405613940811244911312 ~2016
5101515779910203031559912 ~2015
5101894010310203788020712 ~2015
5101916065110203832130312 ~2015
5102372402310204744804712 ~2015
5102632334310205264668712 ~2015
5102897404140823179232912 ~2016
5102898116310205796232712 ~2015
5103073357110206146714312 ~2015
510317669271469...87497714 2023
5103814196310207628392712 ~2015
5104195196310208390392712 ~2015
5104669585110209339170312 ~2015
5104791365910209582731912 ~2015
5105393831910210787663912 ~2015
5105478065910210956131912 ~2015
5105529368310211058736712 ~2015
5105549918971477698864712 ~2017
5105852333910211704667912 ~2015
5105870407110211740814312 ~2015
5105903473730635420842312 ~2016
5106215043730637290262312 ~2016
Exponent Prime Factor Dig. Year
5106345787110212691574312 ~2015
5106632912310213265824712 ~2015
5107259317110214518634312 ~2015
5107417876130644507256712 ~2016
5107493017740859944141712 ~2016
5107895936310215791872712 ~2015
5109391562310218783124712 ~2015
5109429298740875434389712 ~2016
5109517757910219035515912 ~2015
5109723512940877788103312 ~2016
5109967953730659807722312 ~2016
5110012225771540171159912 ~2017
5110171538310220343076712 ~2015
5110218212310220436424712 ~2015
5110250101110220500202312 ~2015
5110272745110220545490312 ~2015
5110449085110220898170312 ~2015
5110604051910221208103912 ~2015
5111020181910222040363912 ~2015
5111044381730666266290312 ~2016
5111094029910222188059912 ~2015
5111218662751112186627112 ~2016
5111270792310222541584712 ~2015
5111308757910222617515912 ~2015
5111858743110223717486312 ~2015
Home
4.768.925 digits
e-mail
25-05-04