Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
4568293613327409761679912 ~2015
456829830119136596602311 ~2014
456846458999136929179911 ~2014
4568703371327412220227912 ~2015
456873222839137464456711 ~2014
456901512719138030254311 ~2014
456926243039138524860711 ~2014
456957787319139155746311 ~2014
456960582239139211644711 ~2014
456971298239139425964711 ~2014
457023033719140460674311 ~2014
457059453599141189071911 ~2014
457061360399141227207911 ~2014
4570756231736566049853712 ~2016
4570853293136566826344912 ~2016
457096155599141923111911 ~2014
457098242399141964847911 ~2014
457106065319142121306311 ~2014
457128497399142569947911 ~2014
457166516639143330332711 ~2014
457173819599143476391911 ~2014
457177773599143555471911 ~2014
4571809836745718098367112 ~2016
457181797199143635943911 ~2014
457203013919144060278311 ~2014
Exponent Prime Factor Dig. Year
457218218519144364370311 ~2014
457235602799144712055911 ~2014
457291860719145837214311 ~2014
457296441239145928824711 ~2014
457348486732478...98076714 2023
457361608319147232166311 ~2014
457369125839147382516711 ~2014
457374509991683...96763314 2024
457388426519147768530311 ~2014
457400562239148011244711 ~2014
457445034719148900694311 ~2014
457459358639149187172711 ~2014
4574771709727448630258312 ~2015
4575085710127450514260712 ~2015
457540928999150818579911 ~2014
457543395839150867916711 ~2014
457559153477842...90475914 2025
457568239919151364798311 ~2014
4575791822936606334583312 ~2016
4575835212745758352127112 ~2016
457591263239151825264711 ~2014
457597163399151943267911 ~2014
457666713239153334264711 ~2014
457673046599153460931911 ~2014
457689046319153780926311 ~2014
Exponent Prime Factor Dig. Year
457695834599153916691911 ~2014
4577079629327462477775912 ~2015
457715506799154310135911 ~2014
4577814384127466886304712 ~2015
457789628519155792570311 ~2014
457806348599156126971911 ~2014
457856492519157129850311 ~2014
457885038119157700762311 ~2014
457885879919157717598311 ~2014
457925137319158502746311 ~2014
4580286862373284589796912 ~2016
458047706999160954139911 ~2014
458069685839161393716711 ~2014
458083544639161670892711 ~2014
458097828839161956576711 ~2014
458105721239162114424711 ~2014
458126808119162536162311 ~2014
458153801399163076027911 ~2014
458161062119163221242311 ~2014
4581867622127491205732712 ~2015
458193585839163871716711 ~2014
458201090639164021812711 ~2014
458209560599164191211911 ~2014
458276523239165530464711 ~2014
458351171999167023439911 ~2014
Exponent Prime Factor Dig. Year
458364765612420...62420914 2024
458385227399167704547911 ~2014
458398573799167971475911 ~2014
458416979639168339592711 ~2014
458429592239168591844711 ~2014
458436045719168720914311 ~2014
458440074839168801496711 ~2014
458451401639169028032711 ~2014
458458438199169168763911 ~2014
458472429239169448584711 ~2014
458482077119169641542311 ~2014
458514436799170288735911 ~2014
458528357519170567150311 ~2014
458560667999171213359911 ~2014
458572926719171458534311 ~2014
458594005799171880115911 ~2014
458669876519173397530311 ~2014
458701495199174029903911 ~2014
458737605119174752102311 ~2014
458751456119175029122311 ~2014
4587535966736700287733712 ~2016
458770597319175411946311 ~2014
4587994610936703956887312 ~2016
4588524769736708198157712 ~2016
458868656996827...16011314 2023
Home
4.768.925 digits
e-mail
25-05-04