Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7096277997170962779971112 ~2017
7096596067114193192134312 ~2016
7096775977114193551954312 ~2016
7096833601114193667202312 ~2016
7097351654314194703308712 ~2016
7097708690956781669527312 ~2017
7097984459914195968919912 ~2016
7098043767742588262606312 ~2017
7098721079914197442159912 ~2016
7098995593114197991186312 ~2016
7099151914142594911484712 ~2017
7099180664314198361328712 ~2016
7099266116314198532232712 ~2016
7099513639342597081835912 ~2017
7099625665114199251330312 ~2016
7100079794314200159588712 ~2016
7100177303914200354607912 ~2016
7100315822314200631644712 ~2016
7100432891914200865783912 ~2016
7100663149114201326298312 ~2016
7100758517914201517035912 ~2016
7100965831114201931662312 ~2016
7101327824956810622599312 ~2017
7101672938314203345876712 ~2016
7101909589114203819178312 ~2016
Exponent Prime Factor Dig. Year
7102101511114204203022312 ~2016
7102239445114204478890312 ~2016
7102357244314204714488712 ~2016
7102629188314205258376712 ~2016
7103189402314206378804712 ~2016
7103364163114206728326312 ~2016
7105029973114210059946312 ~2016
7105063394956840507159312 ~2017
7105113811114210227622312 ~2016
710514148075867...47620715 2023
7105318483114210636966312 ~2016
7105342128142632052768712 ~2017
7105625113114211250226312 ~2016
7105698128314211396256712 ~2016
7105934705956847477647312 ~2017
7106198819914212397639912 ~2016
7106582299114213164598312 ~2016
7106912284371069122843112 ~2017
7107040025914214080051912 ~2016
7107460189114214920378312 ~2016
7107800434156862403472912 ~2017
7108364411914216728823912 ~2016
7108559095114217118190312 ~2016
7109518901914219037803912 ~2016
7110043376314220086752712 ~2016
Exponent Prime Factor Dig. Year
7110054164314220108328712 ~2016
7110410363914220820727912 ~2016
7110539605114221079210312 ~2016
7110661604314221323208712 ~2016
7110908247742665449486312 ~2017
7111042892314222085784712 ~2016
7111721390314223442780712 ~2016
7112373491914224746983912 ~2016
7113097349914226194699912 ~2016
7113408485956907267887312 ~2017
7113881120314227762240712 ~2016
7114555343914229110687912 ~2016
7114689415114229378830312 ~2016
7115203555342691221331912 ~2017
7115312171914230624343912 ~2016
7115412295114230824590312 ~2016
7115568073114231136146312 ~2016
7115641277914231282555912 ~2016
7116439159114232878318312 ~2016
7116684190371166841903112 ~2017
7118565067114237130134312 ~2016
7118815129114237630258312 ~2016
7119316219114238632438312 ~2016
7120516381114241032762312 ~2016
7120859795914241719591912 ~2016
Exponent Prime Factor Dig. Year
7121150486314242300972712 ~2016
7121372983114242745966312 ~2016
7121777279914243554559912 ~2016
7122625400314245250800712 ~2016
7122899808142737398848712 ~2017
7122945950314245891900712 ~2016
7123696789114247393578312 ~2016
7123747579114247495158312 ~2016
7123923997114247847994312 ~2016
7123953776314247907552712 ~2016
7123964717914247929435912 ~2016
7124003167114248006334312 ~2016
7124632483742747794902312 ~2017
7124762690314249525380712 ~2016
7124986253914249972507912 ~2016
7126203937114252407874312 ~2016
7126289014142757734084712 ~2017
7126595181742759571090312 ~2017
7126607647114253215294312 ~2016
7126642984757013143877712 ~2017
7126681059742760086358312 ~2017
7126821725914253643451912 ~2016
7127411408314254822816712 ~2016
7127423300314254846600712 ~2016
7127802446314255604892712 ~2016
Home
4.679.597 digits
e-mail
25-03-23