Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
454752711839095054236711 ~2014
454753334519095066690311 ~2014
454794691319095893826311 ~2014
4548021840127288131040712 ~2015
454810699799096213995911 ~2014
454837482239096749644711 ~2014
454868675999097373519911 ~2014
454875603239097512064711 ~2014
4548869014736390952117712 ~2016
454897725719097954514311 ~2014
4549037930963686531032712 ~2016
4549061569727294369418312 ~2015
454919101799098382035911 ~2014
454926774239098535484711 ~2014
454964800919099296018311 ~2014
4549655863727297935182312 ~2015
4549773026936398184215312 ~2016
4549975350127299852100712 ~2015
4550244336127301466016712 ~2015
455037330839100746616711 ~2014
455077362599101547251911 ~2014
455087553719101751074311 ~2014
455094897839101897956711 ~2014
455117961119102359222311 ~2014
4551483024127308898144712 ~2015
Exponent Prime Factor Dig. Year
4551615724136412925792912 ~2016
455174359799103487195911 ~2014
455180696519103613930311 ~2014
4551865172936414921383312 ~2016
455216103839104322076711 ~2014
455255873639105117472711 ~2014
4552612221727315673330312 ~2015
455344489319106889786311 ~2014
455358766799107175335911 ~2014
455392428119107848562311 ~2014
4554677804936437422439312 ~2016
455469868199109397363911 ~2014
455478400439109568008711 ~2014
4554869467136438955736912 ~2016
455531372999110627459911 ~2014
4555405845727332435074312 ~2015
4555536250736444290005712 ~2016
455554225199111084503911 ~2014
4555585581727333513490312 ~2015
455637410399112748207911 ~2014
455644932839112898656711 ~2014
455667838199113356763911 ~2014
455702737199114054743911 ~2014
4557043555763798609779912 ~2016
4557142543727342855262312 ~2015
Exponent Prime Factor Dig. Year
455746397639114927952711 ~2014
455751937439115038748711 ~2014
4557720394345577203943112 ~2016
455792239199115844783911 ~2014
455859163199117183263911 ~2014
455895435239117908704711 ~2014
455966044199119320883911 ~2014
455971295039119425900711 ~2014
4559716771727358300630312 ~2015
455978561039119571220711 ~2014
4559989134127359934804712 ~2015
4560055891736480447133712 ~2016
4560293875727361763254312 ~2015
456029786519120595730311 ~2014
456040248599120804971911 ~2014
4560481297327362887783912 ~2015
456050033039121000660711 ~2014
456064821239121296424711 ~2014
456107805119122156102311 ~2014
4561146322136489170576912 ~2016
456143430839122868616711 ~2014
456151006319123020126311 ~2014
4561928235145619282351112 ~2016
456200504039124010080711 ~2014
456201862199124037243911 ~2014
Exponent Prime Factor Dig. Year
4562106270127372637620712 ~2015
4562522881136500183048912 ~2016
456269868719125397374311 ~2014
456306227039126124540711 ~2014
456360368399127207367911 ~2014
456390417719127808354311 ~2014
456403574039128071480711 ~2014
456404823119128096462311 ~2014
456450032598325...94441714 2023
456465274319129305486311 ~2014
456466015799129320315911 ~2014
456582081719131641634311 ~2014
456595487039131909740711 ~2014
456599134199131982683911 ~2014
4566044857373056717716912 ~2016
456626931599132538631911 ~2014
4566835742936534685943312 ~2016
4566836095736534688765712 ~2016
456728623319134572466311 ~2014
456749367719134987354311 ~2014
456755312999135106259911 ~2014
456768966239135379324711 ~2014
456778292519135565850311 ~2014
456790042439135800848711 ~2014
456825231719136504634311 ~2014
Home
4.768.925 digits
e-mail
25-05-04