Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
26981175292158494023311 ~2006
2698232651539646530310 ~2005
2698473779539694755910 ~2005
2698506059539701211910 ~2005
26985121972158809757711 ~2006
2698784219539756843910 ~2005
2698886423539777284710 ~2005
26989376211619362572711 ~2006
2699006543539801308710 ~2005
2699122103539824420710 ~2005
2699139731539827946310 ~2005
26992298992159383919311 ~2006
2699274443539854888710 ~2005
2699284391539856878310 ~2005
26993291331619597479911 ~2006
26993544592159483567311 ~2006
2699533979539906795910 ~2005
2699580431539916086310 ~2005
26996313531619778811911 ~2006
2699715839539943167910 ~2005
269971950110798878004112 ~2008
2699756099539951219910 ~2005
2699853251539970650310 ~2005
2699912471539982494310 ~2005
2699929559539985911910 ~2005
Exponent Prime Factor Digits Year
27000165412160013232911 ~2006
2700127571540025514310 ~2005
2700155651540031130310 ~2005
27001765931620105955911 ~2006
2700179519540035903910 ~2005
2700298151540059630310 ~2005
2700334139540066827910 ~2005
27003709211620222552711 ~2006
2700429503540085900710 ~2005
2700440219540088043910 ~2005
27006037011620362220711 ~2006
2700623291540124658310 ~2005
27006396495941407227911 ~2007
2700776951540155390310 ~2005
27008278672160662293711 ~2006
27008741776482098024911 ~2007
27009420371620565222311 ~2006
2700971219540194243910 ~2005
2700983591540196718310 ~2005
2701124831540224966310 ~2005
2701207199540241439910 ~2005
2701254203540250840710 ~2005
2701401803540280360710 ~2005
2701531643540306328710 ~2005
27015947832701594783111 ~2006
Exponent Prime Factor Digits Year
27016941292161355303311 ~2006
270173386311347282224712 ~2008
27018312611621098756711 ~2006
2701957931540391586310 ~2005
2702101211540420242310 ~2005
27021017573782942459911 ~2007
2702121731540424346310 ~2005
2702180303540436060710 ~2005
27023287571621397254311 ~2006
27023399531621403971911 ~2006
27023717331621423039911 ~2006
27024222674323875627311 ~2007
2702432363540486472710 ~2005
2702447651540489530310 ~2005
2702479583540495916710 ~2005
2702555759540511151910 ~2005
2702559599540511919910 ~2005
2702611199540522239910 ~2005
27026837272162146981711 ~2006
270275164129730268051112 ~2009
270275652728649219186312 ~2009
2702867423540573484710 ~2005
27028986474865217564711 ~2007
27029424412162353952911 ~2006
2702951939540590387910 ~2005
Exponent Prime Factor Digits Year
2703007883540601576710 ~2005
2703023639540604727910 ~2005
2703169019540633803910 ~2005
2703180503540636100710 ~2005
2703253463540650692710 ~2005
27032847611621970856711 ~2006
2703415283540683056710 ~2005
2703453023540690604710 ~2005
2703460223540692044710 ~2005
2703528671540705734310 ~2005
2703632411540726482310 ~2005
270380499145423923848912 ~2009
27038101331622286079911 ~2006
2703933143540786628710 ~2005
27039340394867081270311 ~2007
2704088591540817718310 ~2005
2704409639540881927910 ~2005
27044199611622651976711 ~2006
27044273872163541909711 ~2006
27045369772163629581711 ~2006
2704648631540929726310 ~2005
2704692251540938450310 ~2005
2704784891540956978310 ~2005
27048566476491655952911 ~2007
2704942763540988552710 ~2005
Home
5.247.179 digits
e-mail
25-12-14