Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
903466492716262396868712 ~2011
90347728639034772863111 ~2010
90352854711807057094311 ~2009
90354859615421291576711 ~2010
90359547015421572820711 ~2010
90366127191807322543911 ~2009
90367433511807348670311 ~2009
90372248631807444972711 ~2009
90378109791807562195911 ~2009
90379460415422767624711 ~2010
90386567991807731359911 ~2009
90395078217231606256911 ~2010
90396308631807926172711 ~2009
903981293321695551039312 ~2011
90413804175424828250311 ~2010
90414031791808280635911 ~2009
90417430191808348603911 ~2009
90418951431808379028711 ~2009
90426028431808520568711 ~2009
90426296775425577806311 ~2010
90426889617234151168911 ~2010
90433119111808662382311 ~2009
90434915397234793231311 ~2010
90439209711808784194311 ~2009
90448900311808978006311 ~2009
Exponent Prime Factor Dig. Year
90450848031809016960711 ~2009
90455527311809110546311 ~2009
90456380391809127607911 ~2009
90461416911809228338311 ~2009
90462501591809250031911 ~2009
90464993031809299860711 ~2009
90465689031809313780711 ~2009
90466201791809324035911 ~2009
90467237877237379029711 ~2010
90469213431809384268711 ~2009
90474743631809494872711 ~2009
90474760431809495208711 ~2009
904772244714476355915312 ~2011
90479164215428749852711 ~2010
90481644831809632896711 ~2009
904852215114477635441712 ~2011
904861609721716678632912 ~2011
90489197217239135776911 ~2010
90500384991810007699911 ~2009
90502502391810050047911 ~2009
90503989791810079795911 ~2009
90508726815430523608711 ~2010
90509420511810188410311 ~2009
90516875391810337507911 ~2009
90521170311810423406311 ~2009
Exponent Prime Factor Dig. Year
905234059314483744948912 ~2011
90523524111810470482311 ~2009
90527707191810554143911 ~2009
90532930311810658606311 ~2009
90541722919054172291111 ~2010
90544680117243574408911 ~2010
90546991191810939823911 ~2009
90551750391811035007911 ~2009
90553103991811062079911 ~2009
90554458911811089178311 ~2009
90561306231811226124711 ~2009
90561810831811236216711 ~2009
90564661639056466163111 ~2010
90568250511811365010311 ~2009
90572098015434325880711 ~2010
90574880575434492834311 ~2010
90578420991811568419911 ~2009
90586712991811734259911 ~2009
90588751791811775035911 ~2009
905920153123553923980712 ~2011
90593359911811867198311 ~2009
90596620917247729672911 ~2010
906038729921744929517712 ~2011
90608574735436514483911 ~2010
90608818077248705445711 ~2010
Exponent Prime Factor Dig. Year
90609259431812185188711 ~2009
90610563591812211271911 ~2009
90613663431812273268711 ~2009
90619359231812387184711 ~2009
906213388919936694555912 ~2011
90623275911812465518311 ~2009
90625108377250008669711 ~2010
90630558735437833523911 ~2010
90631615311812632306311 ~2009
90634912911812698258311 ~2009
906455555943509866683312 ~2012
90649209711812984194311 ~2009
906497623129007923939312 ~2012
906503524723569091642312 ~2011
90652969911813059398311 ~2009
90658524231813170484711 ~2009
90661402317252912184911 ~2010
90668915935440134955911 ~2010
90672048897253763911311 ~2010
90672687831813453756711 ~2009
906739561965285248456912 ~2013
90676704711813534094311 ~2009
90677913711813558274311 ~2009
906796849319949530684712 ~2011
90680613711813612274311 ~2009
Home
4.724.182 digits
e-mail
25-04-13