Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2705016791541003358310 ~2005
27050376412164030112911 ~2006
27051564292164125143311 ~2006
2705157551541031510310 ~2005
27052263611623135816711 ~2006
2705239079541047815910 ~2005
27052514692164201175311 ~2006
2705339303541067860710 ~2005
270542699315150391160912 ~2008
2705458499541091699910 ~2005
2705464043541092808710 ~2005
27054699293787657900711 ~2007
2705482379541096475910 ~2005
2705529839541105967910 ~2005
2705576543541115308710 ~2005
2705711243541142248710 ~2005
2705716151541143230310 ~2005
2705804879541160975910 ~2005
2705868239541173647910 ~2005
27058738371623524302311 ~2006
27060333898659306844911 ~2008
2706043559541208711910 ~2005
27060497415953309430311 ~2007
270607775332472933036112 ~2009
2706081239541216247910 ~2005
Exponent Prime Factor Digits Year
27061466092164917287311 ~2006
27061793535953594576711 ~2007
2706239219541247843910 ~2005
2706256859541251371910 ~2005
2706259463541251892710 ~2005
270626629115155091229712 ~2008
2706279311541255862310 ~2005
27063294011623797640711 ~2006
27065376412165230112911 ~2006
27065652171623939130311 ~2006
2706604403541320880710 ~2005
27066055931623963355911 ~2006
2706633899541326779910 ~2005
27066385312165310824911 ~2006
2706664739541332947910 ~2005
2706672203541334440710 ~2005
27066954171624017250311 ~2006
2706717179541343435910 ~2005
27067803712165424296911 ~2006
2706819539541363907910 ~2005
2706828983541365796710 ~2005
2706971783541394356710 ~2005
2706977639541395527910 ~2005
2707098143541419628710 ~2005
27071645994872896278311 ~2007
Exponent Prime Factor Digits Year
2707230719541446143910 ~2005
2707237583541447516710 ~2005
270733667959019939602312 ~2010
2707386179541477235910 ~2005
27074670171624480210311 ~2006
2707572359541514471910 ~2005
2707579631541515926310 ~2005
2707692359541538471910 ~2005
2707772603541554520710 ~2005
27078507731624710463911 ~2006
2707927199541585439910 ~2005
270793535911373328507912 ~2008
2707997639541599527910 ~2005
2708080799541616159910 ~2005
27081945237041305759911 ~2007
2708228591541645718310 ~2005
27084586012166766880911 ~2006
27085124411625107464711 ~2006
2708532791541706558310 ~2005
27085402811625124168711 ~2006
2708586623541717324710 ~2005
2708675303541735060710 ~2005
27086761971625205718311 ~2006
2708680343541736068710 ~2005
2708772959541754591910 ~2005
Exponent Prime Factor Digits Year
2708834819541766963910 ~2005
270897913949845216157712 ~2009
2709017543541803508710 ~2005
27091120971625467258311 ~2006
2709135839541827167910 ~2005
2709137159541827431910 ~2005
2709165071541833014310 ~2005
2709221171541844234310 ~2005
2709349091541869818310 ~2005
2709483779541896755910 ~2005
2709746939541949387910 ~2005
27098584072167886725711 ~2006
27099186893793886164711 ~2007
2710069031542013806310 ~2005
2710167959542033591910 ~2005
27102153712168172296911 ~2006
2710228019542045603910 ~2005
2710325603542065120710 ~2005
27103506792710350679111 ~2006
2710594391542118878310 ~2005
27108053931626483235911 ~2006
27108091971626485518311 ~2006
27108334917048167076711 ~2007
2710892291542178458310 ~2005
2711302523542260504710 ~2005
Home
5.247.179 digits
e-mail
25-12-14