Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2689958759537991751910 ~2005
26901344832690134483111 ~2006
2690358719538071743910 ~2005
2690423243538084648710 ~2005
26904352571614261154311 ~2006
26904849771614290986311 ~2006
26905110531614306631911 ~2006
2690554739538110947910 ~2005
2690556779538111355910 ~2005
26906891512152551320911 ~2006
2690713919538142783910 ~2005
2690742563538148512710 ~2005
2690745803538149160710 ~2005
26908463512152677080911 ~2006
26909765714843757827911 ~2007
2690978123538195624710 ~2005
2690994983538198996710 ~2005
2691112199538222439910 ~2005
2691144119538228823910 ~2005
2691165839538233167910 ~2005
2691318551538263710310 ~2005
2691322919538264583910 ~2005
26915970171614958210311 ~2006
2691608483538321696710 ~2005
2691664403538332880710 ~2005
Exponent Prime Factor Digits Year
269197884110767915364112 ~2008
26919991312153599304911 ~2006
2692037291538407458310 ~2005
2692105103538421020710 ~2005
26924673892153973911311 ~2006
26924705411615482324711 ~2006
26926345131615580707911 ~2006
26927161972154172957711 ~2006
2692751879538550375910 ~2005
2692799171538559834310 ~2005
2692948343538589668710 ~2005
2693117099538623419910 ~2005
2693218751538643750310 ~2005
2693273039538654607910 ~2005
2693332679538666535910 ~2005
26934145698080243707111 ~2008
2693516219538703243910 ~2005
2693703059538740611910 ~2005
2693796779538759355910 ~2005
2693856239538771247910 ~2005
2693909219538781843910 ~2005
26939687931616381275911 ~2006
2694053423538810684710 ~2005
2694063191538812638310 ~2005
2694152039538830407910 ~2005
Exponent Prime Factor Digits Year
26942242194849603594311 ~2007
2694256751538851350310 ~2005
2694297863538859572710 ~2005
26944665912694466591111 ~2006
2694579311538915862310 ~2005
2694592091538918418310 ~2005
2694639611538927922310 ~2005
2694654863538930972710 ~2005
2694761159538952231910 ~2005
2694815243538963048710 ~2005
2695066823539013364710 ~2005
269510232145277718992912 ~2009
2695173779539034755910 ~2005
2695296491539059298310 ~2005
2695467479539093495910 ~2005
26955967493773835448711 ~2007
26956073531617364411911 ~2006
2695702211539140442310 ~2005
2695719959539143991910 ~2005
2695745891539149178310 ~2005
2695956071539191214310 ~2005
2695970339539194067910 ~2005
2695971923539194384710 ~2005
2696262599539252519910 ~2005
26963452192157076175311 ~2006
Exponent Prime Factor Digits Year
2696348003539269600710 ~2005
2696415539539283107910 ~2005
2696520083539304016710 ~2005
2696565731539313146310 ~2005
2696615843539323168710 ~2005
26968368892157469511311 ~2006
26969330512157546440911 ~2006
2696944643539388928710 ~2005
26969973015933394062311 ~2007
26970401171618224070311 ~2006
2697089051539417810310 ~2005
26972303571618338214311 ~2006
2697259583539451916710 ~2005
26973607512697360751111 ~2006
2697370583539474116710 ~2005
2697390431539478086310 ~2005
26974345992697434599111 ~2006
26974499331618469959911 ~2006
2697475883539495176710 ~2005
2697544211539508842310 ~2005
26975623192158049855311 ~2006
2697677771539535554310 ~2005
26978219114316515057711 ~2007
26980018192158401455311 ~2006
2698030763539606152710 ~2005
Home
5.247.179 digits
e-mail
25-12-14