Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
63926415111278528302311 ~2008
63926789395114143151311 ~2009
63931217391278624347911 ~2008
63933679791278673595911 ~2008
63937788831278755776711 ~2008
63938724231278774484711 ~2008
63939342591278786851911 ~2008
63940959231278819184711 ~2008
63942665031278853300711 ~2008
63943102311278862046311 ~2008
63944479311278889586311 ~2008
63945040431278900808711 ~2008
639455680165224479370312 ~2012
639463622315347126935312 ~2010
63946413298952497860711 ~2010
63947802111278956042311 ~2008
63948431213836905872711 ~2009
63949561431278991228711 ~2008
63955630431279112608711 ~2008
63956530876395653087111 ~2009
63957196791279143935911 ~2008
63962675391279253507911 ~2008
63964384911279287698311 ~2008
63966060711279321214311 ~2008
63970393311279407866311 ~2008
Exponent Prime Factor Dig. Year
63970815711279416314311 ~2008
63973818831279476376711 ~2008
63979740415118379232911 ~2009
63980928013838855680711 ~2009
63983950791279679015911 ~2008
63984754933839085295911 ~2009
63984818333839089099911 ~2009
63985214391279704287911 ~2008
63988723911279774478311 ~2008
63990558231279811164711 ~2008
63993921591279878431911 ~2008
63997591431279951828711 ~2008
63998514591279970291911 ~2008
640031396315360753511312 ~2010
64004187436400418743111 ~2009
64005100375120408029711 ~2009
64008755991280175119911 ~2008
64010371791280207435911 ~2008
640223911116645821688712 ~2010
64025616111280512322311 ~2008
64031553591280631071911 ~2008
64035351111280707022311 ~2008
64037622013842257320711 ~2009
64038168231280763364711 ~2008
64039821711280796434311 ~2008
Exponent Prime Factor Dig. Year
64040161911280803238311 ~2008
64040711995123256959311 ~2009
64042464831280849296711 ~2008
64045543911280910878311 ~2008
640458375152517586758312 ~2012
64047176391280943527911 ~2008
64052747511281054950311 ~2008
64059609711281192194311 ~2008
64061523231281230464711 ~2008
64062379191281247583911 ~2008
64067377311281347546311 ~2008
64075612431281512248711 ~2008
64075811511281516230311 ~2008
64076854911281537098311 ~2008
64080242991281604859911 ~2008
640809454310252951268912 ~2010
64084514533845070871911 ~2009
64087658991281753179911 ~2008
64090237373845414242311 ~2009
64093085533845585131911 ~2009
64093544031281870880711 ~2008
640939668110255034689712 ~2010
64094322831281886456711 ~2008
64105613213846336792711 ~2009
64105841215128467296911 ~2009
Exponent Prime Factor Dig. Year
64112407933846744475911 ~2009
64113550911282271018311 ~2008
64121385076412138507111 ~2009
641236206711542251720712 ~2010
64125906415130072512911 ~2009
64126113231282522264711 ~2008
64128221813847693308711 ~2009
64130271231282605424711 ~2008
641336917341045562707312 ~2011
64134780231282695604711 ~2008
641351577719240547331112 ~2010
64136364231282727284711 ~2008
641387038711544966696712 ~2010
64140497236414049723111 ~2009
64144115815131529264911 ~2009
64144183431282883668711 ~2008
641442272316677499079912 ~2010
64153706933849222415911 ~2009
64155056991283101139911 ~2008
64156223511283124470311 ~2008
64156437711283128754311 ~2008
641581441310265303060912 ~2010
641595635920531060348912 ~2011
64161177831283223556711 ~2008
64163459173849807550311 ~2009
Home
4.724.182 digits
e-mail
25-04-13