Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
26824933914828488103911 ~2007
2682675371536535074310 ~2005
26826851236438444295311 ~2007
26827038971609622338311 ~2006
2682719423536543884710 ~2005
2682926843536585368710 ~2005
26830182312683018231111 ~2006
2683081211536616242310 ~2005
26831006472683100647111 ~2006
26831602731609896163911 ~2006
2683177943536635588710 ~2005
2683381619536676323910 ~2005
2683640699536728139910 ~2005
2683715483536743096710 ~2005
2683724759536744951910 ~2005
2683785431536757086310 ~2005
268382913111272082350312 ~2008
2683937099536787419910 ~2005
2683961363536792272710 ~2005
26839614735904715240711 ~2007
2683961543536792308710 ~2005
26840805771610448346311 ~2006
2684093759536818751910 ~2005
2684107103536821420710 ~2005
2684150039536830007910 ~2005
Exponent Prime Factor Digits Year
2684513099536902619910 ~2005
2684546171536909234310 ~2005
2684586011536917202310 ~2005
2684618039536923607910 ~2005
26846690834295470532911 ~2007
2685125939537025187910 ~2005
2685233651537046730310 ~2005
2685234131537046826310 ~2005
26852654414296424705711 ~2007
2685275591537055118310 ~2005
2685339719537067943910 ~2005
26853436972148274957711 ~2006
26855793411611347604711 ~2006
26856265971611375958311 ~2006
2685655883537131176710 ~2005
2685940343537188068710 ~2005
2686033151537206630310 ~2005
2686096499537219299910 ~2005
268628415112894163924912 ~2008
2686422911537284582310 ~2005
26864513112686451311111 ~2006
26864995331611899719911 ~2006
26865453912686545391111 ~2006
2686582331537316466310 ~2005
2686615643537323128710 ~2005
Exponent Prime Factor Digits Year
26867398133761435738311 ~2007
2686744163537348832710 ~2005
2686825643537365128710 ~2005
2686879451537375890310 ~2005
26869613832686961383111 ~2006
2686984463537396892710 ~2005
26870743611612244616711 ~2006
2687084171537416834310 ~2005
2687090723537418144710 ~2005
26870941971612256518311 ~2006
26870970893761935924711 ~2007
2687097839537419567910 ~2005
2687102843537420568710 ~2005
268743103930099227636912 ~2009
2687503823537500764710 ~2005
2687551103537510220710 ~2005
268773197315051299048912 ~2008
2687794859537558971910 ~2005
2687796911537559382310 ~2005
2687872283537574456710 ~2005
26879094011612745640711 ~2006
26879242971612754578311 ~2006
2687942651537588530310 ~2005
2688021839537604367910 ~2005
2688042011537608402310 ~2005
Exponent Prime Factor Digits Year
2688099371537619874310 ~2005
2688135479537627095910 ~2005
2688229751537645950310 ~2005
26884469272150757541711 ~2006
26884843872688484387111 ~2006
2688544559537708911910 ~2005
2688555923537711184710 ~2005
2688654263537730852710 ~2005
2688788579537757715910 ~2005
2688897311537779462310 ~2005
2688957959537791591910 ~2005
2689103603537820720710 ~2005
26891402212151312176911 ~2006
2689203059537840611910 ~2005
26892041573764885819911 ~2007
2689251791537850358310 ~2005
2689254611537850922310 ~2005
26892598211613555892711 ~2006
26892874814302859969711 ~2007
2689448159537889631910 ~2005
2689560179537912035910 ~2005
2689690631537938126310 ~2005
26897536811613852208711 ~2006
2689901339537980267910 ~2005
26899278536455826847311 ~2007
Home
5.247.179 digits
e-mail
25-12-14