Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1823464271364692854310 ~2003
18235090195835228860911 ~2006
18235281835835290185711 ~2006
1823567171364713434310 ~2003
1823599439364719887910 ~2003
1823695631364739126310 ~2003
18236973411094218404711 ~2005
1823703803364740760710 ~2003
1823723663364744732710 ~2003
1823725511364745102310 ~2003
1823730971364746194310 ~2003
1823769203364753840710 ~2003
1823809931364761986310 ~2003
18238433932553380750311 ~2005
18238796331094327779911 ~2005
1823935079364787015910 ~2003
1824001103364800220710 ~2003
18240301011459224080911 ~2005
1824085751364817150310 ~2003
18241692731094501563911 ~2005
1824183551364836710310 ~2003
18242559591459404767311 ~2005
1824270719364854143910 ~2003
1824282431364856486310 ~2003
18242920311459433624911 ~2005
Exponent Prime Factor Digits Year
1824332771364866554310 ~2003
1824356903364871380710 ~2003
1824413771364882754310 ~2003
1824470519364894103910 ~2003
1824533471364906694310 ~2003
1824566759364913351910 ~2003
1824569723364913944710 ~2003
1824788939364957787910 ~2003
18248980031824898003111 ~2005
1824915899364983179910 ~2003
1824943583364988716710 ~2003
1825112291365022458310 ~2003
1825130663365026132710 ~2003
1825146671365029334310 ~2003
1825168283365033656710 ~2003
1825168391365033678310 ~2003
18251720871460137669711 ~2005
18251890997300756396111 ~2007
18251953993285351718311 ~2006
18253116295840997212911 ~2006
1825317911365063582310 ~2003
1825375763365075152710 ~2003
1825400039365080007910 ~2003
1825445939365089187910 ~2003
1825494971365098994310 ~2003
Exponent Prime Factor Digits Year
1825571831365114366310 ~2003
182560562913144360528912 ~2007
1825616423365123284710 ~2003
1825626359365125271910 ~2003
1825672031365134406310 ~2003
1825712723365142544710 ~2003
1825780571365156114310 ~2003
1825885871365177174310 ~2003
18259198971095551938311 ~2005
1825920059365184011910 ~2003
18259419411460753552911 ~2005
1825986359365197271910 ~2003
18259881131095592867911 ~2005
1826010299365202059910 ~2003
1826022431365204486310 ~2003
1826035031365207006310 ~2003
1826036423365207284710 ~2003
1826100791365220158310 ~2003
1826162951365232590310 ~2003
18261750776939465292711 ~2006
182622271122279917074312 ~2008
1826255339365251067910 ~2003
1826325911365265182310 ~2003
18264077531095844651911 ~2005
1826468543365293708710 ~2003
Exponent Prime Factor Digits Year
1826533463365306692710 ~2003
1826585699365317139910 ~2003
1826618603365323720710 ~2003
1826724899365344979910 ~2003
1826784539365356907910 ~2003
1826797859365359571910 ~2003
1826811263365362252710 ~2003
1826842463365368492710 ~2003
1826851811365370362310 ~2003
1826879111365375822310 ~2003
1826956583365391316710 ~2003
1826964791365392958310 ~2003
1826972159365394431910 ~2003
18269874531096192471911 ~2005
18270158818769676228911 ~2007
1827048731365409746310 ~2003
1827061919365412383910 ~2003
18271751691461740135311 ~2005
1827288839365457767910 ~2003
1827328799365465759910 ~2003
18273757931096425475911 ~2005
18274517771096471066311 ~2005
1827452531365490506310 ~2003
1827485279365497055910 ~2003
18275539331096532359911 ~2005
Home
5.247.179 digits
e-mail
25-12-14