Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1819173299363834659910 ~2003
1819173311363834662310 ~2003
1819192019363838403910 ~2003
18192059811091523588711 ~2005
1819216583363843316710 ~2003
18192244811091534688711 ~2005
1819346219363869243910 ~2003
18194146011091648760711 ~2005
18194195931091651755911 ~2005
18194754771455580381711 ~2005
18194801274730648330311 ~2006
1819495319363899063910 ~2003
1819506119363901223910 ~2003
18195689211455655136911 ~2005
1819579211363915842310 ~2003
18195814031819581403111 ~2005
1819655759363931151910 ~2003
18196632771091797966311 ~2005
1819748951363949790310 ~2003
18198762731091925763911 ~2005
18198898731091933923911 ~2005
18198919011455913520911 ~2005
1819914263363982852710 ~2003
1819923719363984743910 ~2003
18199607391455968591311 ~2005
Exponent Prime Factor Digits Year
1819998023363999604710 ~2003
1820024711364004942310 ~2003
1820056583364011316710 ~2003
1820082359364016471910 ~2003
18201231532548172414311 ~2005
18201940934004427004711 ~2006
1820194223364038844710 ~2003
1820195603364039120710 ~2003
1820276519364055303910 ~2003
1820319551364063910310 ~2003
18203443131092206587911 ~2005
1820361551364072310310 ~2003
1820464199364092839910 ~2003
18206946131092416767911 ~2005
1820776883364155376710 ~2003
1820789843364157968710 ~2003
18208564131092513847911 ~2005
18208639511820863951111 ~2005
1820867183364173436710 ~2003
1820950559364190111910 ~2003
18209688171092581290311 ~2005
1821015263364203052710 ~2003
18210724271821072427111 ~2005
1821089183364217836710 ~2003
1821148403364229680710 ~2003
Exponent Prime Factor Digits Year
1821149399364229879910 ~2003
1821174191364234838310 ~2003
18211828434370838823311 ~2006
18212409432913985508911 ~2006
1821280451364256090310 ~2003
1821280871364256174310 ~2003
1821307931364261586310 ~2003
1821345563364269112710 ~2003
18214939371092896362311 ~2005
1821506759364301351910 ~2003
18215195931092911755911 ~2005
18215754611092945276711 ~2005
1821643283364328656710 ~2003
1821648011364329602310 ~2003
1821673559364334711910 ~2003
1821685259364337051910 ~2003
1821756311364351262310 ~2003
1821765791364353158310 ~2003
18217717131093063027911 ~2005
1821778103364355620710 ~2003
1821788543364357708710 ~2003
1821802211364360442310 ~2003
18219139571093148374311 ~2005
18220114972550816095911 ~2005
1822051859364410371910 ~2003
Exponent Prime Factor Digits Year
18221073171093264390311 ~2005
1822184051364436810310 ~2003
1822212863364442572710 ~2003
18223462032915753924911 ~2006
1822413539364482707910 ~2003
18224365731093461943911 ~2005
1822460459364492091910 ~2003
18225025793280504642311 ~2006
18226621731093597303911 ~2005
18226692371093601542311 ~2005
18226977531093618651911 ~2005
1822865123364573024710 ~2003
18229142531093748551911 ~2005
182293258933541959637712 ~2008
1822973759364594751910 ~2003
1822973891364594778310 ~2003
18230361611093821696711 ~2005
1823053091364610618310 ~2003
18231421339844967518311 ~2007
18231647692552430676711 ~2005
1823283179364656635910 ~2003
18233745711458699656911 ~2005
1823395523364679104710 ~2003
18234338531094060311911 ~2005
1823460923364692184710 ~2003
Home
5.247.179 digits
e-mail
25-12-14