Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1827636659365527331910 ~2003
1827706619365541323910 ~2003
1827765431365553086310 ~2003
18278139171096688350311 ~2005
1827829463365565892710 ~2003
1827877823365575564710 ~2003
18279772971096786378311 ~2005
18281119371462489549711 ~2005
1828198499365639699910 ~2003
18282315837678572648711 ~2007
18282702171096962130311 ~2005
18283086612925293857711 ~2006
1828315283365663056710 ~2003
1828422503365684500710 ~2003
18284527631828452763111 ~2005
18284533211097071992711 ~2005
18284985471462798837711 ~2005
18285571492559980008711 ~2005
1828603391365720678310 ~2003
1828714031365742806310 ~2003
1828718999365743799910 ~2003
1828740323365748064710 ~2003
1828764023365752804710 ~2003
1828787171365757434310 ~2003
18288302092560362292711 ~2005
Exponent Prime Factor Digits Year
1828915859365783171910 ~2003
1828960739365792147910 ~2003
18289979177315991668111 ~2007
1829028191365805638310 ~2003
1829053883365810776710 ~2003
1829106743365821348710 ~2003
1829149979365829995910 ~2003
18292404291463392343311 ~2005
182930842311707573907312 ~2007
18293651774390476424911 ~2006
1829481359365896271910 ~2003
18295084794390820349711 ~2006
1829530799365906159910 ~2003
1829567699365913539910 ~2003
1829577719365915543910 ~2003
18296717634391212231311 ~2006
1829756891365951378310 ~2003
1829863019365972603910 ~2003
18298944772561852267911 ~2005
1829900651365980130310 ~2003
1829901383365980276710 ~2003
18299190611097951436711 ~2005
1829953571365990714310 ~2003
1829960003365992000710 ~2003
18299628011097977680711 ~2005
Exponent Prime Factor Digits Year
1830014111366002822310 ~2003
1830179831366035966310 ~2003
183018592710249041191312 ~2007
1830192323366038464710 ~2003
18302577611098154656711 ~2005
18303092531098185551911 ~2005
1830314303366062860710 ~2003
1830327263366065452710 ~2003
1830336311366067262310 ~2003
1830345311366069062310 ~2003
1830370571366074114310 ~2003
1830397703366079540710 ~2003
1830440159366088031910 ~2003
1830452003366090400710 ~2003
1830453239366090647910 ~2003
1830605519366121103910 ~2003
18307015811098420948711 ~2005
1830704723366140944710 ~2003
1830715391366143078310 ~2003
1830828179366165635910 ~2003
1830911051366182210310 ~2003
1830942251366188450310 ~2003
1831103171366220634310 ~2003
1831127471366225494310 ~2003
18311482331098688939911 ~2005
Exponent Prime Factor Digits Year
1831194551366238910310 ~2003
18311996811098719808711 ~2005
18312191931098731515911 ~2005
1831238099366247619910 ~2003
1831322483366264496710 ~2003
1831334051366266810310 ~2003
18314044611098842676711 ~2005
1831411619366282323910 ~2003
18314517531098871051911 ~2005
18314971191465197695311 ~2005
1831561703366312340710 ~2003
1831598519366319703910 ~2003
1831608923366321784710 ~2003
1831616639366323327910 ~2003
1831689179366337835910 ~2003
1831726343366345268710 ~2003
18317397591465391807311 ~2005
18317610918792453236911 ~2007
1831832819366366563910 ~2003
1831857743366371548710 ~2003
1831893071366378614310 ~2003
18319883294030374323911 ~2006
1832031923366406384710 ~2003
1832044979366408995910 ~2003
1832053319366410663910 ~2003
Home
5.247.179 digits
e-mail
25-12-14