Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1711528883342305776710 ~2003
17116650191711665019111 ~2005
1711720343342344068710 ~2003
1711775771342355154310 ~2003
1711775963342355192710 ~2003
1711873763342374752710 ~2003
1711907783342381556710 ~2003
1711940663342388132710 ~2003
17119408871711940887111 ~2005
1711986179342397235910 ~2003
1711999571342399914310 ~2003
17120491731027229503911 ~2004
1712065991342413198310 ~2003
1712098991342419798310 ~2003
1712184119342436823910 ~2003
1712200403342440080710 ~2003
1712217779342443555910 ~2003
1712267171342453434310 ~2003
1712284103342456820710 ~2003
1712373359342474671910 ~2003
1712387531342477506310 ~2003
1712406599342481319910 ~2003
17124184931027451095911 ~2004
17124246418219638276911 ~2007
17124406371027464382311 ~2004
Exponent Prime Factor Digits Year
1712441303342488260710 ~2003
1712486879342497375910 ~2003
1712493743342498748710 ~2003
1712508431342501686310 ~2003
17125515312740082449711 ~2005
1712718443342543688710 ~2003
17127279431712727943111 ~2005
1712788463342557692710 ~2003
1712834891342566978310 ~2003
17128496471712849647111 ~2005
1712854679342570935910 ~2003
1712865359342573071910 ~2003
17129176311370334104911 ~2005
1712960003342592000710 ~2003
1712980991342596198310 ~2003
17130197417879890808711 ~2006
17130699771027841986311 ~2004
17130840971027850458311 ~2004
1713084671342616934310 ~2003
1713088931342617786310 ~2003
1713124043342624808710 ~2003
17131470411027888224711 ~2004
17132061131027923667911 ~2004
17132578512741212561711 ~2005
17132667471370613397711 ~2005
Exponent Prime Factor Digits Year
17132826674111878400911 ~2006
17133305835825323982311 ~2006
1713362351342672470310 ~2003
1713373643342674728710 ~2003
1713376139342675227910 ~2003
1713475331342695066310 ~2003
1713549023342709804710 ~2003
1713558839342711767910 ~2003
1713567059342713411910 ~2003
17135857391713585739111 ~2005
1713614999342722999910 ~2003
17136514191370921135311 ~2005
1713655679342731135910 ~2003
1713663443342732688710 ~2003
17137666611028259996711 ~2004
17137899892399305984711 ~2005
1713795683342759136710 ~2003
1713795731342759146310 ~2003
1713875771342775154310 ~2003
1713878531342775706310 ~2003
1713898331342779666310 ~2003
17139446692399522536711 ~2005
17140125771028407546311 ~2004
1714082759342816551910 ~2003
1714083359342816671910 ~2003
Exponent Prime Factor Digits Year
17140927971028455678311 ~2004
17141501531028490091911 ~2004
1714219943342843988710 ~2003
17142582012742813121711 ~2005
1714281311342856262310 ~2003
1714291259342858251910 ~2003
1714352039342870407910 ~2003
1714357763342871552710 ~2003
1714378511342875702310 ~2003
1714380779342876155910 ~2003
1714466723342893344710 ~2003
1714492679342898535910 ~2003
1714611683342922336710 ~2003
17146346331028780779911 ~2004
1714674719342934943910 ~2003
17146926911714692691111 ~2005
1714694483342938896710 ~2003
1714805063342961012710 ~2003
17148058933772572964711 ~2006
1714827071342965414310 ~2003
17149856772743977083311 ~2005
1714988183342997636710 ~2003
17150289291372023143311 ~2005
1715030279343006055910 ~2003
17150495776860198308111 ~2006
Home
5.187.277 digits
e-mail
25-11-17