Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
418339363310040144719312 ~2009
4183602443836720488710 ~2006
4183765991836753198310 ~2006
4183873559836774711910 ~2006
4183904531836780906310 ~2006
41839118812510347128711 ~2007
41842511213347400896911 ~2008
4184310479836862095910 ~2006
4184328359836865671910 ~2006
4184625251836925050310 ~2006
4184821559836964311910 ~2006
4184831663836966332710 ~2006
41848334393347866751311 ~2008
41852072693348165815311 ~2008
4185299483837059896710 ~2006
4185533063837106612710 ~2006
418558335166969333616112 ~2011
4185631979837126395910 ~2006
4185686903837137380710 ~2006
4185743843837148768710 ~2006
41859739913348779192911 ~2008
418666888316746675532112 ~2009
4186702979837340595910 ~2006
4186896251837379250310 ~2006
41869265172512155910311 ~2007
Exponent Prime Factor Digits Year
41869654012512179240711 ~2007
4186990019837398003910 ~2006
4187026331837405266310 ~2006
41870626812512237608711 ~2007
4187171843837434368710 ~2006
4187217323837443464710 ~2006
4187328419837465683910 ~2006
4187425211837485042310 ~2006
41874489132512469347911 ~2007
4187727983837545596710 ~2006
41877649132512658947911 ~2007
4187893763837578752710 ~2006
41879483572512769014311 ~2007
41882701135863578158311 ~2008
4188659171837731834310 ~2006
4189016651837803330310 ~2006
41890391573351231325711 ~2008
4189140419837828083910 ~2006
4189221383837844276710 ~2006
4189236851837847370310 ~2006
41894946412513696784711 ~2007
4189516679837903335910 ~2006
41897052717541469487911 ~2008
41897434732513846083911 ~2007
4189746371837949274310 ~2006
Exponent Prime Factor Digits Year
4189761899837952379910 ~2006
4189942079837988415910 ~2006
41900033812514002028711 ~2007
4190026751838005350310 ~2006
41900442532514026551911 ~2007
41903460593352276847311 ~2008
41904085812514245148711 ~2007
4190443583838088716710 ~2006
4190611283838122256710 ~2006
4191389903838277980710 ~2006
41916100613353288048911 ~2008
4191624263838324852710 ~2006
4191787703838357540710 ~2006
41918607376706977179311 ~2008
4191984371838396874310 ~2006
419204000910060896021712 ~2009
4192351811838470362310 ~2006
41923549132515412947911 ~2007
419290032112578700963112 ~2009
4192911119838582223910 ~2006
4193031659838606331910 ~2006
4193170931838634186310 ~2006
4193465483838693096710 ~2006
4193705363838741072710 ~2006
4193991299838798259910 ~2006
Exponent Prime Factor Digits Year
41940740213355259216911 ~2008
4194279959838855991910 ~2006
4194319439838863887910 ~2006
41946537593355723007311 ~2008
41947091594194709159111 ~2008
4194725159838945031910 ~2006
4194880043838976008710 ~2006
41950310532517018631911 ~2007
41952208732517132523911 ~2007
4195467911839093582310 ~2006
4195596263839119252710 ~2006
41957579397552364290311 ~2008
4195972139839194427910 ~2006
4196056031839211206310 ~2006
41968601412518116084711 ~2007
41969000693357520055311 ~2008
4196918051839383610310 ~2006
4197075203839415040710 ~2006
4197236423839447284710 ~2006
4197378023839475604710 ~2006
4197424139839484827910 ~2006
4197553523839510704710 ~2006
4197695171839539034310 ~2006
4197748259839549651910 ~2006
4197785519839557103910 ~2006
Home
4.768.925 digits
e-mail
25-05-04