Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4197846203839569240710 ~2006
41981226893358498151311 ~2008
41981988612518919316711 ~2007
4198552439839710487910 ~2006
4198730351839746070310 ~2006
4198866179839773235910 ~2006
4199047871839809574310 ~2006
4199159831839831966310 ~2006
4199415491839883098310 ~2006
4199488679839897735910 ~2006
4199660243839932048710 ~2006
42000404993360032399311 ~2008
42001431612520085896711 ~2007
42003360532520201631911 ~2007
4200419903840083980710 ~2006
42005874499241292387911 ~2009
4200685259840137051910 ~2006
4200718871840143774310 ~2006
4200719051840143810310 ~2006
4200877379840175475910 ~2006
420090871110922362648712 ~2009
4201095779840219155910 ~2006
4201190699840238139910 ~2006
4201195931840239186310 ~2006
4201499063840299812710 ~2006
Exponent Prime Factor Digits Year
4201505459840301091910 ~2006
4201507883840301576710 ~2006
42016967717563054187911 ~2008
4201774631840354926310 ~2006
4201777631840355526310 ~2006
4201894439840378887910 ~2006
42020314874202031487111 ~2008
4202228399840445679910 ~2006
42023300873361864069711 ~2008
4202759579840551915910 ~2006
42029097194202909719111 ~2008
4203057671840611534310 ~2006
4203555491840711098310 ~2006
4203844979840768995910 ~2006
4204232843840846568710 ~2006
420442470116817698804112 ~2009
4204520399840904079910 ~2006
42046916572522814994311 ~2007
42048210532522892631911 ~2007
4204883531840976706310 ~2006
4204922279840984455910 ~2006
4204951799840990359910 ~2006
4205065979841013195910 ~2006
4205353931841070786310 ~2006
420580785710093938856912 ~2009
Exponent Prime Factor Digits Year
4205856911841171382310 ~2006
4206047063841209412710 ~2006
4206170123841234024710 ~2006
4206280943841256188710 ~2006
4206370739841274147910 ~2006
4206374723841274944710 ~2006
4206462083841292416710 ~2006
42065425132523925507911 ~2007
420658640913461076508912 ~2009
4206795011841359002310 ~2006
4207119263841423852710 ~2006
4207354919841470983910 ~2006
4207479791841495958310 ~2006
42077532473366202597711 ~2008
42082835873366626869711 ~2008
4208414459841682891910 ~2006
42086091295892052780711 ~2008
420890569319360966187912 ~2010
42089518212525371092711 ~2007
42090278277576250088711 ~2009
4209129923841825984710 ~2006
4209399539841879907910 ~2006
420947637134517706242312 ~2010
4209549203841909840710 ~2006
4209675059841935011910 ~2006
Exponent Prime Factor Digits Year
4209797219841959443910 ~2006
4209993323841998664710 ~2006
4209997139841999427910 ~2006
4210195499842039099910 ~2006
4210380143842076028710 ~2006
4210417979842083595910 ~2006
4210468943842093788710 ~2006
4210652819842130563910 ~2006
421077639712632329191112 ~2009
421110851310106660431312 ~2009
4211257439842251487910 ~2006
4211286251842257250310 ~2006
4211493743842298748710 ~2006
42115103834211510383111 ~2008
42115586213369246896911 ~2008
42116027273369282181711 ~2008
42118702514211870251111 ~2008
4212008039842401607910 ~2006
42120785873369662869711 ~2008
42122252573369780205711 ~2008
4212247619842449523910 ~2006
42122576772527354606311 ~2007
42124214693369937175311 ~2008
4212499163842499832710 ~2006
42125124532527507471911 ~2007
Home
4.768.925 digits
e-mail
25-05-04